## Math 110 - College Algebra

Andy Rosen
www.rosenmath.com

## Graphs of Equations

First, we should understand that an equation is a way to describe a bunch of points that have the same relationship between $x$ and $y$.

- I could list the points $(1,3),(4,12)$,

$$
(-2,-6),(1.8,5.4),(-1 / 4,-3 / 4)
$$

- Or, I could describe them all by writing

$$
y=3 x
$$

To graph an equation, an easy way is the t-chart.

Ex. Graph $y=7-3 x$.

| $x$ | $y=7-3 x$ |  |
| :--- | :--- | :--- |
| 2 | $7-3(2)=7-6=1$ | $(2,1)$ |
| 1 | $7-3(1)=7-3=4$ | $(1,4)$ |
| 0 | $7-3(0)=7-0=7$ | $(0,7)$ |
| -1 | $7-3(-1)=7+3=10$ | $(-1,10)$ |
| -2 |  |  |

Ex. Graph $y=x^{2}-2$

| $x$ | $y=x^{2}-2$ |  |
| :---: | :---: | :--- |
| 2 | $(2)^{2}-2=4-2=2$ | $(2,2)$ |
| 1 | $(1)^{2}-2=1-2=-1$ | $(1,-1)$ |
| 0 | $(0)^{2}-2=0-2=-2$ | $(0,-2)$ |
| -1 | $(-1)^{2}-2=1-2=-1$ | $(-1,-1)$ |
| -2 | $(-2)^{2}-2=4-2=2$ | $(-2,2)$ |

Ex. Graph $y=x^{3}-2 x$ with your calculator


$x$-intercept is where the graph crosses the $x$-axis $\rightarrow y=0$
$y$-intercept is where the graph crosses the $y$-axis $\rightarrow x=0$

Ex. Find the $x$ - and $y$-intercepts of the line $3 x+2 y=6$, then graph the line.
$x$-int.: $y=0$

$$
\begin{aligned}
3 x+2(0) & =6 \\
\frac{3 x}{2} & =\frac{6}{3} \\
x & =2 \\
\frac{y-i n t:}{x} & =0 \\
3(0)+2 y & =6 \\
\frac{8 y}{2} & =6 \\
2 & =3
\end{aligned} \quad(0,3)
$$



Thy. The equation of a circle is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

where the center is $(h, k)$ and the length of the radius is $r$.

$$
\begin{aligned}
& \text { Distance Formula } \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Ex. Write the equation of the circle with center $(-1,2)$ if the point $(3,4)$ lies on the circle.

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x--1)^{2}+(y-2)^{2}=(\sqrt{20})^{2} \\
& (x+1)^{2}+(y-2)^{2}=20
\end{aligned}
$$



Ex. Solve

$$
\begin{gathered}
\widehat{3(7 x+1)}=\widehat{6(x-1)}+4 \\
21 x+3=6 x-6+4 \\
21 x+3=6 \not x-2 \\
-6 x \\
-6 x \\
15 x+3=-2 \\
-3 \\
\frac{15 x}{T 5}=\frac{-5}{15} \\
x=-\frac{1}{3}
\end{gathered}
$$

Ex. Solve $\frac{x}{3}+\frac{3 x}{4}=2$

$$
\begin{gathered}
\frac{4}{4} \cdot \frac{3^{3}}{3}+\frac{3 x}{4} \cdot \frac{1^{2}}{1}=2 \cdot(12) \\
4 x+9 x=24 \\
\frac{+3 x}{73}=\frac{24}{13} \\
x=\frac{24}{13}
\end{gathered}
$$

Ex. Solve $\frac{1}{x-2}<\frac{3}{x+2}$

$$
\frac{1}{2} x \frac{5}{10}
$$

$$
1 \cdot 10=2.5
$$

$$
\begin{aligned}
1(x+2) & =\widehat{3(x-2)} \\
x+2 & =3 x-6 \\
-x & -x \\
2 & =2 x-6 \\
+6 & +6 \\
\frac{8}{2} & =\frac{8 x}{2} \\
x & =4
\end{aligned}
$$

Check

$$
\frac{1}{4-2}=\frac{3}{4+2}
$$

$$
\frac{1}{2}=\frac{3}{6}
$$

Ex. The number $y$ (in millions) of female participants in high school athletic programs in the United States from 1989 to 2002 can be approximated by the linear model $y=0.085 t+1.83$ where $t=0$ represents 1990.
a) Find the $y$-intercept of the model. What does it represent? $\longrightarrow t=0 \Rightarrow 1990$

$$
\begin{aligned}
& y=0.085(0)+1.83 \\
& y=1.83 \text { mil. part. }
\end{aligned}
$$

Represents \# of part. in 1990.

Ex. The number $y$ (in millions) of female participants in high school athletic programs in the United States from 1989 to 2002 can be approximated by the linear model $y=0.085 t+1.83$, where $t=0$ represents 1990 .
b) Find the year in which there will be 3 million participants.

$$
y=3
$$

$$
\begin{aligned}
& y=0.085 t+1.83 \\
& 3=0.085 t+1.83 \\
& -1.83 \\
& \frac{1.17}{.085}=\frac{0.085 t}{.085} \\
& t=13.76 \longrightarrow 2004
\end{aligned}
$$

Ex. You have a job for which your annual salary will be $\$ 32,300$. This includes a year-end bonus of $\$ 500$. You will be paid twice a month. What is your pay (before taxes) for each paycheck?
$X=$ amt. of each paycheck

$$
\begin{gathered}
24 x+500=32300 \\
-500 \quad-500 \\
\frac{24 x=31800}{24} \\
\frac{24}{24}=\$ 325
\end{gathered}
$$

## Translating Key Words and Phrases

Key Words and Phrases
Verbal Description

Equality:
Equals, equal to, is, are,
was, will be, represents
Addition:
Sum, plus, greater than, increased by,
more than, exceeds, total of
Subtraction:
Difference, minus, less than, decreased by, subtracted from, reduced by, the remainder 2081531 Andy Rose
Product, multiplied by,
twice, times, percent of

## Division:

Quotient, divided by, ratio, per

- The sale price $S$ is $\$ 10$ less than the list price $L$
- The sum of 5 and $x$
- Seven more than $y$
- The difference of 4 and $b$
- Three less than $z$
- Two times $x$
- Three percent of $t$
- The ratio of $x$ to 8

Algebraic Expression
or Equation
$S=L-10$
$5+x$ or $x+5$
$7+y$ or $y+7$
$4-b$
$z-3$
$2 x$
$0.03 t$
$\frac{x}{8}$

## from p. 91 in the book

Ex. A rectangular kitchen is twice as long as it is wide. If the perimeter is 84 feet, find the dimensions of the kitchen.

$$
\begin{array}{rl}
x+2 x+x+2 x=84 \\
\frac{6 x}{x} & =\frac{84}{6} \\
x & =14 \\
2 x & \mathrm{ft} \\
2 x & \mathrm{ff} .
\end{array}
$$



O
Ex. The shadow of a building is 142 feet long. At the same time, a 4 -foot post has a shadow that is 6 in . long. How tall is the building?


$$
\begin{aligned}
\frac{h}{142} & \frac{4}{1 / 2} \\
\frac{1}{2} h & =(142)(4) \\
2 \cdot \frac{1}{2} h & =568 \cdot 2 \\
h & =1136 \mathrm{ft}
\end{aligned}
$$

Ex. You invested $\$ 10,000$ at $4.5 \%$ and $5.5 \%$ simple interest. During 1 year, the accounts earned $\$ 508.75$. How much did you invest in each account?

$$
\begin{aligned}
x= & a_{m} t . \text { at } 4.5 \% \\
10000-x= & \text { amt. at } 5.5 \% \longrightarrow .045 x=\text { int. in acct. } \\
& .045 x+.055(10000-x)=508.75
\end{aligned}
$$

There are several useful formulas on p. 95
Ex. A cylindrical can has a volume of $200 \mathrm{~cm}^{3}$ and a radius of 4 cm . Find the height of the can.

$$
\begin{aligned}
& V=\pi r^{2} h \\
& 200=\pi(4)^{2} h \\
& \frac{200}{16 \pi}=\frac{\pi \pi h}{16 \pi} \\
& h=397
\end{aligned}
$$

