Ex. Factor
a) $\underline{x}^{2}+\frac{5 x}{\text { add }}+\frac{6}{m \text { nt. }}=\left(x+\frac{2 \pi}{x}(x+3)\right.$ F inst outer Inner
b) $x^{2}+3 x-40=(x+8)(x+-5)$
c) $5 x^{2}-17 x+\underline{6}=\left(\frac{5}{\left(\frac{5}{x+\frac{-2}{\frac{7}{-17}\left(\frac{1}{-2}\right.} x+\frac{-3}{-15}}\right)}\right.$
d) $9 x^{2}-25=(3 x+5)(3 x-5)$.

Quadratic Equations
Ex. Solve $2 x^{2}+9 x+7=\beta$

Ex. Solve $6 x^{2}-3 x=0$

$$
\begin{array}{cc}
3 x(2 x-1)=0 \\
\frac{3 x}{3}=\frac{0}{3} & 2 x-1=0 \\
x=0 & 2 x=1 \\
x=\frac{1}{2}
\end{array}
$$

Ex. Solve $\sqrt{(x-3)^{2}}=\sqrt{7}$

$$
\begin{array}{ll}
x-x= \pm \sqrt{7} \\
+3
\end{array} \quad \begin{aligned}
& 3+\sqrt{7} \\
& x=3 \pm \sqrt{7}
\end{aligned}
$$

"Completing the Square" means making the equation look like $(x+b)^{2}=c$

Ex. Solve $x^{2}+2 x-6=0{ }_{+6} 0$ by completing the square

$$
\begin{gathered}
x^{2}+2 x+1=6+1 \\
\sqrt{(x+1)^{2}}=\sqrt{7} \\
x+1= \pm \sqrt{7} \\
x=-1 \pm \sqrt{7}
\end{gathered}
$$

Ex. Solve $3 x^{2}-4 x-5=0$ by completing the square

Thm. The Quadratic Formula
The solutions to $a x^{2}+b x+c=0$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Ex. Solve $x^{2}+3 x=9$

$$
\begin{aligned}
& a=1 \\
& b=3 \\
& c=-9
\end{aligned}
$$

$$
1 x^{2}+3 x-9=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{3^{2}-4(1)(-9)}}{2(1)}
$$

$$
=\frac{-3 \pm \sqrt{9+36}}{2}=\frac{-3 \pm \sqrt{45}}{2}=\frac{-3 \pm 3 \sqrt{5}}{2}
$$

$$
\begin{equation*}
\sqrt{45}=3 \sqrt{5} \tag{5}
\end{equation*}
$$

(3) (3)

Ex. The number of internet users in the US can be modeled by the equation

$$
I=-1.163 t^{2}+17.19 t+125.9
$$

where t is years since 2000. Using this model, find the year when the number of users will surpass 180 .

Complex Numbers

You learned that we can't take the square root of a negative number.

$$
\begin{aligned}
& i=\sqrt{-1} \\
& i^{2}=-1
\end{aligned}
$$

\rightarrow Guess again...
The solution to $x^{2}+1=0$ is $x=\sqrt{-1}$ which we define as " i ".
$\rightarrow 4$ is called a real number
$\rightarrow 5 i$ is called an imaginary number

$\rightarrow 4+5 i$ is called a complex number

When adding, combine like terms.

$$
\text { Ex. }(\underline{4}+\underline{\underline{7}})+(\underline{1}-6 i)=5+i
$$

Ex. $(3+2 i)+(4-5 i)-(7+i)=0-4 i$

$$
3+2 i+4-5 i-7-i
$$

$$
\begin{aligned}
& \text { Ex. }(\underbrace{2-i)(4+3} i)=8+6 i-4 i \underbrace{-3 \overparen{i}^{2}}_{+3}{ }^{-1}=11+2 i \\
& \text { Ex. }(\overbrace{3+2 i)(3-2}^{3+2})=9-6 i+6 i \underbrace{-4\left(i^{-1}\right.}_{+4}=13 \\
& \text { Ex. }(3+2 i)^{2}=(\underbrace{3+2 i)(3+2} i)=9+6 i+6 i+\underbrace{4 i^{2}}_{-4} \\
& =5+12 i
\end{aligned}
$$

$3+2 i$ and $3-2 i$ are complex conjugates because their product was a real number.

Def. $a+b i$ and $a-b i$ are complex conjugates.

When you have a fraction that involves complex number, it is not OK to have any complex numbers on the bottom.
\rightarrow We can use the complex conjugate to "rationalize" the fraction.

$$
\text { Ex. Simplify } \begin{aligned}
\frac{(2+3 i(4+2 i)}{(-2 \hat{i})(4+2 i)} & =\frac{8+4 i+12 i+6 \pi-6}{16+\frac{8 i}{-8} i-4 \pi+4} \\
& =\frac{2+16 i}{20} \\
& =\frac{2}{20}+\frac{16}{20} i \\
& =\frac{1}{10}+\frac{4}{5} i \\
& =\Delta+\square i
\end{aligned}
$$

$$
\text { Ex. Simplify } \begin{aligned}
\frac{7(6-i)}{\sqrt{(6-i)}} & =\frac{42-7 i}{36-6 i+6 i+i} \\
& =\frac{42-7 i}{37} \\
& =\frac{42}{37}-\frac{7}{37} i
\end{aligned}
$$

We should express square roots of negative numbers as complex numbers.

$$
\begin{aligned}
& \sqrt{-16}=i \sqrt{16}=4 i \\
& \sqrt{-50}=i \sqrt{50}=5 i \sqrt{2} \\
& \sqrt{-3} \sqrt{-12}=i \sqrt{3} \cdot i \sqrt{12}=i^{2} \sqrt{36}=-6
\end{aligned}
$$

(2) (5)

Ex. Solve $3 x^{2}-2 x+5=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(5)}}{2(3)}
$$

$$
\begin{aligned}
& a=3 \\
& b=-2 \\
& c=5
\end{aligned}
$$

$$
=\frac{2 \pm \sqrt{4-60}}{6}=\frac{2 \pm \sqrt{-56}}{6}
$$

$$
=\frac{2 \pm i \sqrt{56}}{6}=\frac{2 \pm 2 i \sqrt{14}}{6}
$$

$$
\begin{aligned}
& =\frac{6}{6(1 \pm i \sqrt{14})} \\
& =\frac{6}{3}=\frac{1 \pm \sqrt{14}}{3}
\end{aligned}
$$

