Other Equations <u>Ex.</u> Solve $3x^4 = 48x^2$ $3x^{4} - 48x^{2} = 0$ $3x^{2}(x^{2}-16) = 0$ $3x^{2}(x+4)(x-4) = 0$ $3x^{2}(x+4)(x-4) = 0$ x - 4 = 0U 1.0

Ex. Solve $x^3 - 3x^2 + 3x - 9 = 0$ x'(x-3) + 3(x-3) = 0 $(\chi^{-3})(\chi^2+3)=0$ x2+3=0 X-3=0 Jx2 = J-3 x = 3 $\chi = \pm i \sqrt{3}$

<u>Ex.</u> Solve $x^4 - 3x^2 + 2 = 0$ $\xrightarrow{\gamma : x^2}$ $\gamma^2 - 3\gamma + 2 = 0$ $(x^2 - 1)(x^2 - 2) = 0$ $(\gamma - 1)(\gamma - 2) = 0$ $(\chi^2 - 1)(\chi^2 - 2) = 0$

When solving equations with radicals, absolute value, or variables on the bottom, check all answers.

Ex. Solve $\sqrt{2x+7} - x = 2$ =2 $\sqrt{2x+7} = (x+2)^2$ X=-3 $\frac{7(\cdot 3)}{7(\cdot 3)} = 7 - (-3) = 2$ $\sqrt{-6 + 7} + 3 = 2$ $\sqrt{-6 + 7} + 3 = 2$ $Z_{x+7} = x^{2} + 4x + 4$ $0 = x^{2} + 2x - 3$ 0 = (x+3)(x-1)x+3=0x-1=0x=-1=11x=1

 $(\chi + 2)^{1} = (\chi + 2)(\chi + 2)$ = x2+2x+2x+4 =x 2+4x+4

Ex. Solve $\sqrt{2x-5} - \sqrt{x-3} = 1$ $)(\sqrt{2x-5})(\sqrt{x-3}+1)^{2}$ $(\sqrt{x-3}+1)(\sqrt{x-3}+1)$ $\frac{\chi = 7}{\Gamma_{2}(7) - 5} - \sqrt{7 - 3} = 1$ 2x-5 = x-3+2(x-3+1) $= \chi - 3 + 2 \sqrt{\chi - 3} + 1$ 14-5-54 = $2x-5=x-2+2\sqrt{x-3}$ $\sqrt{9} - \sqrt{Y} = 1$ (x-3)(x-3) $(\chi - 3)^{2} - (2\sqrt{\chi - 3})^{2}$ $= \chi^2 - 6\chi + 9$ x = 3 . $x^{2}-6x+9=4(x-3)$ $7(3) - 5 - \sqrt{3 - 3} = 1$ 56-5-50=1 $x^{2}-6x+9=4x-12$ $\sqrt{1} - \sqrt{0} = 1$ x2-10x+21=0 (x-3)(x-7)=0X-3=0 x-7=0

<u>Ex.</u> Solve $\frac{2}{-1} = \frac{3}{-1}$ x-2 $\boldsymbol{\chi}$ $\frac{2}{X} \cdot \frac{\chi(x-2)}{1} = \frac{3}{\chi^2} \cdot \frac{\chi(x-2)}{1} = \frac{1}{\chi^2} \cdot \frac{\chi(x-2)}{1} = \frac{1}{\chi^2} \cdot \frac{\chi(x-2)}{1}$ 2(x-2) = 3x - x(x-2) $2x - 4 = 3x - x^2 + 2x$ Check: 2x-4= -x2+5x Neither assur $\chi^2 - 3\chi - 4 = 0$ makes us divide (x-4)(x+1) = 0by 0 > both an swer 5

<u>Ex.</u> Solve $|x^2 - 3x| = -4x + 6$ $\chi^2 - 3\chi = -(-4\chi + 6)$ $\chi^2 - 3\chi = -4\chi + 6$ x2-3x=4x-6 $x^{2} + x - 6 = 0$ $x^{2}-7x+6=0$ (x+3)(x-2) = 0(x-6)(x-1) = 0x-2=0 x-6=0 x+3=0 $|(\cdot^{3})^{2} - 3(\cdot^{3})| = -4(\cdot^{3}) + 6 \qquad |x - 6| = -4(\cdot^{3}) + 6 \qquad |x - 6| = -4(\cdot^{3}) + 6 \qquad |x - 6| = -4(\cdot^{3}) + 6 \qquad |x - 4(\cdot^{3}) + |x$ KX =

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A =amount in account

- *P* = principal (original amount)
- r = annual interest rate (as a decimal)
- n = number of compoundings annually

t = years that have passed

<u>Ex.</u> When you were born, your grandparents deposited $\frac{5000}{100} = \rho$ in an account that compounds interest <u>quarterly</u>. On your

 $t = 25^{\text{th}}$ birthday, the value of the investment is \$25,062.59. AWhat is the annual interest rate on the account?

Inequalities

This means that we'll use $<> \leq$ and \geq

Ex. Express each interval as an inequality. Is it bounded?

c.[0, 2]

 $d.(-\infty,\infty)$

To solve inequalities, change them to equalities and then check the intervals.[If you want treat as an equality, remember that multiplying or dividing by a negative switches the inequality]

|x-5| = 2x-5=2 x-5=-2 - x=3 x = 7

<u>Ex.</u> Solve $|x + 3| \ge 7$

<u>Ex.</u> Solve $x^2 + 2x + 4 < 0$

<u>Ex.</u> A projectile is fired straight/upward from the ground $5_{\sigma} = 0$ with an initial velocity of 384 t/sec. During what time period will its height exceed 2000 ft?

$$[s = -16t^2 + v_0t + s_0]$$

$$-16t^{2} + 384t + 0 > 2000$$