Equation of a Line

Thy. A line has the equation $y=m x+b$, where $m=$ slope and $b=y$-intercept.
\rightarrow This is called Slope-Intercept Form
Ex. Find the slope and y-intercept:
a) $y=\underline{3} x+\underline{1}$

$$
\begin{aligned}
& \text { slope }=3 \\
& y-\text { int. }=1
\end{aligned}
$$

b) $2 x+3 y=1$

$$
y=-\frac{2 x}{3}+\frac{1}{3}
$$

$$
\rightarrow y=\frac{-2}{3}_{\text {"slope }} x+\left(\frac{1}{3}\right)^{-y^{\text {int. }}}
$$

Ex. Graph:
a) $y=2 x+1$

x	$y=2 x+1$
-1	$2(-1)+1=-2+1=-1$
0	$2(0)+1=0+1=1$
1	$2(1)+1=2+1=3$

Ex. Graph:
b) $y=2$

Ex. Graph:
c) $x+y=2$

$$
\begin{aligned}
\begin{array}{c}
x-\text { int. } \\
x+0
\end{array} \rightarrow 2 \quad y=0 \\
x=2
\end{aligned} \quad(2,0), \quad \begin{aligned}
y \text {-int. } & \rightarrow x=0 \\
0+y & =2 \\
y & =2 \quad(0,2)
\end{aligned}
$$

Slope

Thm. The slope between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Ex. Find the slope between $(-2, \underline{0})$ and $(3,1)$.

$$
m=\frac{1-0}{3-(-2)}=\frac{1}{5}
$$

- Rising line has positive slope: $\frac{2}{5}, 4$
- Falling line has negative slope: $-8,-\frac{3}{7}$

- Horizontal line as slope of $0: \frac{0}{5}, \frac{0}{-3}$
- Vertical line has undefined slope: $\frac{2}{0}, \frac{8}{0}$
\rightarrow A vertical line has an equation like $x=3$, and can't be written as $y=m x+b$

Thm. Parallel lines have the same slope.
Thm. Perpendicular lines have slopes that are negative reciprocals. $\quad \frac{2}{5} \rightarrow \frac{-5}{2} \quad \frac{-6}{1} \rightarrow \frac{1}{6}$
Ex. Are the lines parallel, perpendicular. or neither?

$$
\begin{array}{lll}
(3,-1) \text { to }(-3,1) & \text { and } & (0,3) \text { to }(-1,0) \\
m=\frac{-1-1}{3-(-3)}=\frac{-2}{6}=\frac{-1}{3} & m=\frac{3-0}{0-(-1)}=\frac{3}{1}=3
\end{array}
$$

Thm. A line with $m=$ slope that passes through the point $\left(x_{1}, y_{1}\right)$ has the equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

\rightarrow This is called Point-Slope Form
Ex. Write the equation in Slope-Intercept Form:
a) slope $=3$, contains ($(\underline{1},-\underline{2})$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-2)=3(x-1) \\
y+2=3 x-3 \\
-2=2
\end{gathered}
$$

Ex. Write the equation in Slope-Intercept Form:
b) contains (2,5) and (4,-1)

$$
m=\frac{-1-5}{4-2}=\frac{-6}{2}=-3
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=-3(x-2) \\
& y-\$ 8=-3 x+6 \\
&+5 \\
& y=-3 x+11
\end{aligned}
$$

Ex. Find equation ${ }^{5}$ of the lines that pass through $(2,-1)$ are:
a) parallel to, and
b) perpendicular to,

$$
\begin{gathered}
\text { the line } 2 x-3 y=5 \\
-2 x-2 x
\end{gathered}
$$

a) $\begin{aligned} & m=\frac{2}{3},(2,-1) \\ & y-(-1)=\frac{2}{3}(x-2)\end{aligned}$
b)

$$
\begin{aligned}
& m=-\frac{3}{2},(2,-1) \\
& y-(-1)=\frac{-3}{2}(x-2)
\end{aligned}
$$

$$
\begin{aligned}
\frac{-3 y}{-3} & =\frac{-2 x}{-3}+\frac{5}{-3} \\
y & \left.=\frac{2}{3}\right) x-\frac{5}{3}
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Functions

Def. (formal) A function f from set A to set B is a relation that assigns to each element x in set A exactly one element y in set B.

Def. (informal) A set of ordered pairs is a function if no two points have the same x-coordinate

x is called the independent variable y is called the dependent variable

Rather than writing

$y=7 x+2$
we can express a functionl as
$f(x)=7 x+2$$\longrightarrow$ " f of x "
\rightarrow This is called Function Notation

$$
f(x)=7 x+2
$$

Ex. Let $g(\underline{\underline{x}})=-x^{2}+4 x+1$, find
a) $g(2)$

$$
\begin{aligned}
& =-2^{2}+4(2)+1 \\
& =-4+8+1=5
\end{aligned}
$$

b) $g(t)=-t^{2}+4 t+1$
c)

$$
\begin{aligned}
g(t+2) & =-(t+2)^{2}+4 \widehat{(t+2)}+1 \\
& =-\left(t^{2}+4 t+4\right)+4 t+8+1 \\
& =-t^{2}-4 t-4+4 t+9=-t^{2}+5
\end{aligned}
$$

The next example is called a piecewise function because the equation depends on what we are plugging in.
Ex. Let $f(x)=\left\{\begin{array}{cc}x^{2}+1 & x<0 \\ x-1 & x \geq 0\end{array}\right.$
Find $f(-1), f(0)$, and $f(1)$.

$$
\begin{aligned}
& f(-1)=(-1)^{2}+1=1+1=2 \\
& f(0)=0-1=-1 \\
& f(1)=1-1=0
\end{aligned}
$$

Ex. Write the equation of a linear function $f(x)$, given that $f(1)=4$ and $f(3)=10$.
$\left.(1,4) \quad \begin{array}{c}(3,10) \\ m\end{array}\right) \frac{10-4}{3-1}=\frac{6}{2}=3$

$$
\begin{aligned}
& y-4=3(x-1) \\
& y-y=3 x-3 \\
&+4 \\
& y=3 x+1 \\
& f(x)=3 x+1
\end{aligned}
$$

Often, finding the domain means finding the x 's that can't be used in the function

Ex. Find the domain of the function
a) $g(x)=\frac{1}{x+5}$

$$
x \neq-5
$$

b) Volume of a sphere: $V=\frac{4}{3} \pi r^{3}$

Ex. Find the domain of the function
c) $h(x)=\sqrt{4-x^{2}} \quad[-2,2]$

$$
\begin{aligned}
4-x^{2} & =0 \\
\sqrt{4} & =\sqrt{x^{2}} \\
x & = \pm 2
\end{aligned}
$$

Ex. When a baseball is hit, the height of the baseball is given by the function $f(x)=-0.0032 x^{2}+x+3$, where x is distance travelled (in ft) and $f(x)$ is height (in ft). Will the baseball clear a 10 -foot fence that is 300 ft from home plate?

