Graph of a Function

Ex. Using the graph, find:
a) domain all reals
b) range $(-\infty, 3] \cup(5, \infty)$
c) $f(-1), f(1)$, and $f(2)$

$$
233
$$

The graph of a function will pass the vertical line test - all vertical lines will pass through the graph at most once.

Ex. Determine if this is the graph of a function
a)

b)

Def. The zeroes of a function f are the x values for which $f(x)=0$.

Ex. Find the zeroes of the function
a) $f(x)=3 x^{2}+\mid x-10=0$

Ex. Find the zeroes ${ }_{2}$ of the function
b) $g(x)=\sqrt{10-x^{2}}=0^{2}$

$$
\begin{gathered}
10-x^{2}=0 \\
\sqrt{10}=\sqrt{x^{2}}
\end{gathered}
$$

$$
x= \pm \sqrt{10}
$$

c)

$$
\begin{aligned}
& h(t)=\frac{2 t-3}{t+5}=0 \\
& \frac{(t+5)}{1} \cdot \frac{2 t-3}{t+5}=0 \cdot(t+5)
\end{aligned} \quad \begin{aligned}
2 t & =3 \\
t & =\frac{3}{2}
\end{aligned}
$$

This is where the graph crosses the x-axis.

Let discuss increasing, decreasing, relative minimum, and relative maximum

Ex. Use a calculator to approximate the relative minimum of the function

$$
f(x)=3 x^{2}-4 x-2 .
$$

Earlier, we worked with slope as the rate of change of a line
\rightarrow If the graph is nonlinear, we still want to talk about rate of change, but this slope is different at every point.

We can discuss the average rate of change between two points.

The points can be connected using a secant line

The average rate of change is the slope between the points

Ex. Find the average rate of change of $f(\underline{x})=\underline{x}^{3}-3 \underline{x}$ from $x_{1}=-2$ to $x_{2}=1$.

$$
\begin{aligned}
f(-2) & =(-2)^{3}-3(-2) \\
& =-8+6=-2 \\
f(1) & =1^{3}-3(1) \\
& =1-3=-2
\end{aligned}
$$

$$
(-2,-2) \quad(1,-2)
$$

$$
\binom{\text { ave. rate }}{\text { of change }}=\frac{-2-(-2)}{-2-1}=0
$$

Ex. The distance s (in feet) a moving car has traveled is given by the function $s(t)=20 t^{3 / 2}$ where t is time (in seconds). Find the average speed from $t_{1}=4$ to $t_{2}=9$.

$$
\begin{aligned}
& A(4)=20(4)^{3 / 2}=20(\sqrt{4})^{3} \\
& =20(2)^{3}=20(8)=160 \\
& A(9)=20(9)^{3 / 2}=20(\sqrt{9})^{3} \\
& =20(3)^{3}=20(27)=540
\end{aligned}
$$

$$
\begin{aligned}
\left(\begin{array}{c}
4,160) \\
\text { s ft }
\end{array}\right. & \binom{9,540}{a} \\
\binom{\text { ave. rate }}{\text { of change }} & =\frac{540-160}{9-4} \mathrm{st} \\
& =\frac{380}{5} \\
& =76 \mathrm{sec} / \mathrm{sec}
\end{aligned}
$$

Def. A function $f(x)$ is even if $f(-x)=f(x)$.
\rightarrow The graph will have y-axis symmetry

Def. A function $f(x)$ is odd if $f(-x)=-f(x)$.
\rightarrow The graph will have origin symmetry

Ex. Determine if the function is even, odd, or neither:
a) $g(x)=3 x_{\text {odd }}^{8}-2 x_{\text {odd }}^{0}$ odd
b) $h(x)=x_{\text {even }}^{(2)}+\underset{\text { even }}{1 x^{0}} \quad$ even

Ex. Determine if the function is even, odd, or neither:
c) $f(x)=x^{8}-4 x^{(1)}+8 x^{0}$

Parents Functions

We are going to talk about some basic functions, and next class we will expand upon them.

Earlier, we saw that a function $f(x)=a x+b$ is linear
\rightarrow The domain of a linear function is all real numbers, and the range is all real numbers

The constant function is $f(x)=c$
\rightarrow The graph is a horizontal line

The identify function is $f(x)=x$

The squaring function is $f(x)=x^{2}$
\rightarrow The domain is all real numbers
\rightarrow The range is all nonnegative numbers
\rightarrow The graph is even and has y-axis symmetry

The cubic function is $f(x)=x^{3}$
\rightarrow The domain is all real numbers
\rightarrow The range is all real numbers
\rightarrow The graph is odd and has origin symmetry

The reciprocal function is $f(x)=\frac{1}{x}=x^{-1}$
\rightarrow The domain is all nonzero numbers
\rightarrow The range is all nonzero numbers
\rightarrow The graph is odd and has origin symmetry

Ex. Sketch a graph of $f(x)= \begin{cases}2 x+3 & x \leq 1 \\ -x+4 & x>1\end{cases}$

x	$y=2 x+3$
1	$2(1)+3=5$
0	$2(0)+3=3$
-1	$2(-1)+3=1$
x	$y=-x+4$
1	$-(1)+4=3$
2	$-(2)+4=2$
3	$-(3)+4=1$

Def. The greatest integer function, $\llbracket x \rrbracket$, is defined as

$$
\begin{aligned}
& f(x)=\llbracket x \rrbracket=\binom{\text { the greatest integer }}{\text { less than or equal to } x}=\left(\begin{array}{l}
\text { round doun })
\end{array}\right. \\
& {[1.5]=1} \\
& {\left[\begin{array}{l}
{[8]} \\
{[5]} \\
=1
\end{array}\right.} \\
& \text { [5] }=5 \\
& \llbracket-3.7 \rrbracket=-4
\end{aligned}
$$

The graph looks like this:

This type of function is called a step function

