Transformations

We're going to take the functions from last class and alter them to get new ones

Ex. Compare $y=x^{2}$ and $y=x^{2}+2$

Ex. Compare $y=x^{2}$ and $y=(x+2)^{2}$

Vertical and Horizontal Shifts
Let c be a positive real number. Vertical and horizontal shifts in the graph of $y=f(x)$ are represented as follows.

1. Vertical shift c units upward:
2. Vertical shift c units downward:
3. Horizontal shift c units to the right:
4. Horizontal shift c units to the left:

$$
\begin{gathered}
\left.\begin{array}{l}
h(x)=f(x)+c \\
h(x)=f(f)-c \\
h(x)=f(x) \\
h(x)=f(x)+d
\end{array}\right\} \text { ont side }=\text { vertical } \\
\text { opposite direction }
\end{gathered}
$$

Ex. Use the graph of $f(x)=x^{3}$ to sketch:
a. $g(x)=x^{3}-1$
b. $g(x)=(x+2)^{3}+1$

Ex. For part b, use function notation to write $g(x)$ in terms of $f(x)$.

$$
g(x)=f(x+2)+1
$$

Reflections in the Coordinate Axes

Reflections in the coordinate axes of the graph of $y=f(x)$ are represented

1. Reflection in the x-axis:
2. Reflection in the y-axis:

$$
\begin{aligned}
& n(x)-f(x) \rightarrow \text { outside = vertical } \\
& n(x) f(-x) \rightarrow \text { inside = horizontal }
\end{aligned}
$$

Ex. Given the graph of $y=x^{4}$ below, identify the equation of the second graph.

Ex. Use the graph of $f(x)=\sqrt{x}$ below to describe and draw the graph of:
a) $f(x)=\sqrt{-x}$ horit. flip

b) $f(x)=\underset{\substack{\text { vet. } \\ \text { vel.p } \\ \text { flip }}}{-} \sqrt{\substack{x+2 \\ \text { shiff } \\ \text { let } \\ \text { et }}}$

Multiplying by a number will cause a stretch or shrink

This is called a nonrigid transformation
You could memorize what each does, but it's easier to figure it out by plugging in numbers.

Ex. Use the graph of $f(x)=|x|$ below to draw the graph of:

$$
\begin{aligned}
& \text { a) } f(x)=3|x| \\
& f(1)=3|1|=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } f(x)=\frac{1}{3}|x| \\
& f(1)=\frac{1}{3}|1|=\frac{1}{3}
\end{aligned}
$$

Composite Functions

This means combining two functions to get a new function.

Ex. Let $f(x)=2 x-3$ and $g(x)=x^{2}-1$, find
a) $(f+g)(x)=2 x-3+x^{2}-1=x^{2}+2 x-4$
b) $(f g)(x)=(2 x-3)\left(x^{2}-1\right)=2 x^{3}-2 x-3 x^{2}+3$
c) $\left(\frac{f}{g}\right)(x)=\frac{2 x-3}{x^{2}-1}$

Ex. Let $f(x)=2 x+1$ and $g(x)=x^{2}+2 x-1$, find $(f-g)(2)=f(2)-g(2)$

$$
=5-7=-2
$$

$$
\begin{aligned}
& f(2)=2(2)+1=5 \\
& g(2)=2^{2}+2(2)-1=7
\end{aligned}
$$

$$
(f \circ g)(x) \text { means } f(g(x))
$$

Ex. Given $f(x)=x+2$ and $g(x)=4-x^{2}$
a)

$$
\begin{aligned}
(f \circ g)(x)=f(\underline{g(x)}))=f\left(\underline{4-x^{2}}\right) & =\left(4-x^{2}\right)+2 \\
& =6-x^{2}
\end{aligned}
$$

b) $(g \circ f)(x)=g(f(x))=g(x+2)=4-(x+2)^{2}$

Ex. Write $h(x)=\frac{1}{(x-2)^{2}}$ as the composition of two functions.

$$
\begin{array}{ll}
\text { wo functions. } & f(x)=\frac{1}{x^{2}} \\
f(g(x))=\frac{1}{(x-2)^{2}} & g(x)=x-2
\end{array}
$$

Inverse Functions
Ex. Make t-charts for $f(x)=x+4$ and $g(x)=x-4$.

x	$f(x)=x+4$
1	5
2	6
3	7
4	8
5	9

x	$g(x)=x-4$
5	1
6	2
7	3
8	4
9	5

Two functions are inverses if the roles of x and y are switched.
f-inverse
Ex. If reese s $=\sqrt[3]{x+1}$, find $f^{-1}(x)$.

$$
\begin{aligned}
& x^{3}=\sqrt[3]{y+1} \\
& x^{3}=y+1 \\
& -1 \\
& x^{3}-1=y
\end{aligned}
$$

An inverse function doesn't always exist, and you wont always be able to solve for y

Ex. For the previous example, find

$$
\begin{aligned}
& \left(f^{-1} \circ f\right)(x) \\
& =f^{-1}(f(x)) \\
& =f^{-1}(\sqrt[3]{x+1}) \\
& =(\sqrt[3]{x+1})^{3}-1 \\
& =x+1-1 \\
& =x
\end{aligned}
$$

For any function, $\left(f^{-1} \circ f\right)(x)=x$

Ex. Show that $f(x)=\frac{5}{x-2}$ and $g(x)=\frac{5}{x}+2$ are inverses.

$$
\begin{aligned}
\Rightarrow \text { Show } f(g(x)) & =x \\
f(g(x))=f\left(\frac{s}{x}+2\right)=\frac{5}{\left(\frac{5}{x}+2\right)-2}=\frac{5}{5 / x} & =5 \cdot \frac{x}{5} \\
& =x
\end{aligned}
$$

Because the x 's and y 's are switched, the graphs of f and f^{-1} are reflected over the line $y=x$.

Ex. Given the graph of $f(x)$ below, sketch f^{-1}.

$\geq \sqrt{\lambda}$ and $\frac{y=x^{2}}{x \geqslant 0}$ are not inverses.

- Consider the graphs

A function is one-to-one if each y-coordinate corresponds to exactly one x-coordinate

These graphs pass the horizontal line test

A function is invertible (it has an inverse) if it passes the horizontal line test

Ex. Are these functions invertible?
a)

yes
no

Even if the function is invertible, you still may not be able to find an equation.

