Transformations

We're going to take the functions from last class and alter them to get new ones

Ex. Compare
$$y = x^2$$
 and $y = (x + 2)^2$

Vertical and Horizontal Shifts

Let *c* be a positive real number. Vertical and horizontal shifts in the graph of y = f(x) are represented as follows.

- 1. Vertical shift c units upward:
- 2. Vertical shift c units downward:
- 3. Horizontal shift c units to the right:

4. Horizontal shift c units to the *left*:

$$h(x) = f(x) + c$$

$$h(x) = f(x) - c$$

$$h(x) = f(x - c)$$

$$h(x) = f(x + c)$$
inside = horizontal
sopposite direction

Ex. For part b, use function notation to write g(x) in terms of f(x). g(x) = f(x+2) + 1

Reflections in the Coordinate Axes

Reflections in the coordinate axes of the graph of y = f(x) are represented as follows.

- 1. Reflection in the x-axis:
- 2. Reflection in the y-axis:

$$h(x) = -f(x) \longrightarrow \text{outside = vertical}$$

 $h(x) = f(-x) \longrightarrow \text{inside = horizontal}$

Ex. Given the graph of $y = x^4$ below, identify the equation of the second graph. $y = -x^4 + \frac{1}{\gamma}$

Multiplying by a number will cause a stretch or shrink

This is called a <u>nonrigid transformation</u>

You could memorize what each does, but it's easier to figure it out by plugging in numbers.

b)
$$f(x) = \frac{1}{3}|x|$$

 $f(x) = \frac{1}{3}|x|$

<u>Composite Functions</u> This means combining two functions to get a new function.

Ex. Let
$$f(x) = 2x - 3$$
 and $g(x) = x^2 - 1$, find
a) $(f + g)(x) = 2x - 3 + x^2 - 1 = x^2 + 2x - 4$
b) $(fg)(x) = (2x - 3)(x^2 - 1) = 2x^3 - 2x - 3x^2 + 3$
c) $\left(\frac{f}{g}\right)(x) = \frac{2x - 3}{x^2 - 1}$

Ex. Let
$$f(x) = 2x + 1$$
 and $g(x) = x^2 + 2x - 1$,
find $(f - g)(2) = f(2) - g(2)$
= 5 - 7 = -2

•

$$f(z) = 2(z) + 1 = 5$$

$$g(z) = 2^{2} + 2(z) - 1 = 7$$

$$(f \circ g)(x) \text{ means } f(g(x))$$
Ex. Given $f(x) = x + 2$ and $g(x) = 4 - x^2$
a) $(f \circ g)(x) = f(\underline{g(x)}) = f(\underline{4-x^2}) = (\underline{4-x^2}) + 2$
 $= 6 - x^2$

b)
$$(g \circ f)(x) = g(f(x)) = g(x + 2) = 4 - (x + 2)^{2}$$

Ex. Write
$$h(x) = \frac{1}{(x-2)^2}$$
 as the composition
of two functions.
 $f(g(x)) = \frac{1}{(x-2)^2}$ $f(x) = \frac{1}{x^2}$
 $g(x) = x-2$

An inverse function doesn't always exist, and you won't always be able to solve for *y*

<u>Ex.</u> For the previous example, find $f(x)=\sqrt[3]{x+1}$ $(f^{-1}\circ f)(x)$. $f^{-1}(x)=x^{3}-1$ $= \int^{-1} (f(x))$ $= f^{-1}(\sqrt[3]{X+1})$ $= \left(\sqrt[3]{X+1} \right)^{3} - 1$ = X+1 - 1= X

For any function, $(f^{-1} \circ f)(x) = x$

Ex. Show that
$$f(x) = \frac{5}{x-2}$$
 and $g(x) = \frac{5}{x} + 2$
are inverses.
 $\Rightarrow \text{Show } f(g(x)) = x$
 $f(g(x)) = f(\frac{5}{x} + 2) = \frac{5}{(\frac{5}{x} + 2) - 2} = \frac{5}{5/x} = \frac{5}{x} \cdot \frac{x}{x}$

Because the x 's and y 's are switched, the graphs of f and f^{-1} are reflected over the line y = x.

$y=\sqrt{3}$ and $y=x^2$ are not inverses. - Consider the graphs

These graphs pass the <u>horizontal line test</u>

A function is <u>invertible</u> (it has an inverse) if it passes the horizontal line test

Ex. Are these functions invertible?

Even if the function is invertible, you still may not be able to find an equation.