First part is out of 30 pts. Second part is out of 75 pts. Total points possible is 105 pts . \rightarrow Grade is out of 100 pts .

Quadratic Functions

In Chapter 3, we will discuss polynomial functions

Def. A polynomial is a function that adds integer powers of x, each of which has a constant coefficient. The highest power of x is called the degree of the polynomial.

$$
f(x)=5 x^{9}-\frac{1}{3} x^{4}+x^{3}-7 x+2
$$

There are no roots and we don't divide by x.

A polynomial of degree 2 is called a quadratic function.

$$
\begin{aligned}
& g(x)=x^{2}+6 x+2 \\
& h(x)=\frac{1}{4} x^{2}-9 \\
& j(x)=(x-2)(x-1)
\end{aligned}
$$

The general form of a quadratic function is

$$
f(x)=a x^{2}+b x+c
$$

The graph is called a parabola.

$$
f(x)=a x^{2}+b x+c
$$

Parabolas are symmetric with respect to a vertical line, called the axis of symmetry

This line has the equation

$$
x=-\frac{b}{2 a}
$$

The turning point of a parabola is called the vertex.
Notice that the x-coordinate of the vertex is also $x=-\frac{b}{2 a}$
If the lead coefficient, a, is positive, the parabola opens upward.

$$
f(x)=a x^{2}+b x+c
$$

If the lead coefficient, a, is negative, the parabola opens downward.

Ex. A baseball is hit so that path of the ball is given by the function $f(x)=-0.0032 x^{2}+1 x+3$, where $f(x)$ is the height of the ball (in ft.) and x is the horizontal distance from home plate (in ft.). What is the maximum height reached by the baseball?

$$
\begin{aligned}
& \text { Vertex } \\
& x=-\frac{b}{2 a}=\frac{-1}{2(-.0032)} \\
& x=156.25 \\
& \text { height }=f(156.25) \\
&=-.0032(156.25)^{2}+156.25+3 \\
&=81.125 \text { Pt. }
\end{aligned}
$$

Ex. Convert to standard form Find the vertex of $f(x)=2 x^{2}+8 x+7$, and then sketch a graph.

$$
\begin{aligned}
& x=\frac{2 a}{2(2)} \\
& y=2(-2)^{2}+8(-2)+7=2(4)-16+7=8-9=-1
\end{aligned}
$$

x	$y=2 x^{2}+8 x+7$
0	$2(0)^{2}+8(0)+7=0+0+7=7$
-1	$2(-1)^{2}+8(-1)+7=2-8+7=1$
-2	-1
-3	1
-4	7

Pract. Find the coordinates of the vertex of $f(x)=-x^{2}+6 x-8$, then sketch the graph.
$(3,1)$ vertex: $x=\frac{-b}{2 a}: \frac{-6}{2(-1)}: \frac{-6}{-2}=3$

$$
y=-(3)^{2}+6(3)-8=-9+18-8=1
$$

x	$y=-x^{2}+6 x-8$
1	$-(1)^{2}+6(1)-8=-1+6-8=-3$
2	$-(2)^{2}+6(2)-8=-4+12-8=0$
3	1
4	0
5	-3

The standard form of a quadratic function is

$$
f(x)=a(x-h)^{2}+k
$$

The vertex of the parabola is the point (h, k).
If $a>0$, the parabola opens upward.
If $a<0$, the parabola opens downward.

Ex. Write the equation of the parabola whose vertex is $\left(\frac{1}{h}, 2\right)$ and that contains the point $(3,5)$.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x-1)^{2}+2 \\
& 5=a(3-1)^{2}+2 \\
& 5=a(2)^{2}+2 \\
& -2 \\
& \frac{3}{4}=\frac{3}{4} \rightarrow a=\frac{3}{4}(x-1)^{2}+2
\end{aligned}
$$

Polynomial Functions

While graphing higher order polynomials will be difficult, there are some things that will help.

All polynomials are continuous (no gaps or jumps).

polynomial

not a polynomial

All polynomials are smooth (no sharp turns).

Some simple polynomials to graph look like $f(x)=x^{n}$, where n is a positive integer. These are called power functions.

Ex. Sketch $f(x)=(x+1)^{4}$ left 1

The lead coefficient can tell you about the "end behavior" of the graph

- What happens if the graph keeps going left or right
- The degree of the polynomial affects the results

If the degree is odd:

Positive lead coeff.

$$
f(x)=2 x^{3}-3 x^{2}+2 x+2 \quad f(x)=-3 x^{5}+4 x^{2}+8
$$

Negative lead coeff.

If the degree is even:

Positive lead coeff.

$$
f(x)=x^{4}+5 x^{2}+3 x+8
$$

$$
f(x)=-2 x^{2}+12 x-15
$$

Ex. Describe the end behavior of the graph.
a) $\left.f(x)=-x^{3}\right)+4 x$
right: As $x \rightarrow \infty, y \rightarrow-(\infty)^{3}=-\infty$
left: As $x \rightarrow-\infty, y \rightarrow-(-\infty)^{3}={ }_{u \rho}^{+\infty}$

b) $f(x)=-5 x+x^{4}+4$
right: As $x \rightarrow \infty, y \rightarrow(\infty)^{4}=+\infty$
left: As $x \rightarrow-\infty, y \rightarrow(-\infty)^{4}=+\infty$

Remember, the zeroes of a function are the values of x that make $f(x)=0$
If the degree of a polynomial is n, then there will be at most n zeroes on the graph

Ex. Find the zeroes of $f(x)=-2 x^{4}+2 x^{2}=0$

$$
\begin{array}{ll}
2 x^{2}\left(-x^{2}+1\right)=0 \\
\frac{2 x^{2}}{4} \frac{0}{2} & -x+2+1=0 \\
\sqrt{x^{2}}=\sqrt{0} & +2 x^{2} \\
x=0 & \sqrt{1}=\sqrt{x^{2}} \\
x= \pm 1
\end{array}
$$

Let's look at the graph of the function.

Pract. Consider the function
a) Find the zeroes.
$f(x)=\begin{aligned} & 3 x^{4}-4 x^{3} \\ & 3 x^{4}-4 x^{3}=0\end{aligned}$
b) Describe the end behavior.

$$
x^{3}(3 x-4)=0
$$

c) Sketch a graph.

$$
\begin{array}{rr}
x^{3}=0 & 3 x-4=0 \\
x=0 & 3 x=4 \\
x=\frac{4}{3}
\end{array}
$$

right: as $x \rightarrow \infty, y \rightarrow 3(\infty)^{4}=+\infty$
Left: as $x \rightarrow-\infty, y \rightarrow 3(-\infty)^{4}=+\infty$

Intermediate Value Theorem

If f is a polynomial then, on the interval $[a, b], f$ takes on every value between $f(a)$ and $f(b)$.

Ex. Use the Intermediate Value Theorem to show that $f(x)=x^{3}-x^{2}+1$ has a zero on the interval $[-2,0]$.

$$
\begin{aligned}
& f(-2)=(-2)^{3}-(-2)^{2}+1=-8-4+1=-11 \\
& f(0)=0^{3}-0^{2}+1=1 \\
& f(-2)<0 \text { and } f(0)>0,
\end{aligned}
$$

so $f(x)=0$ on the internal.

