Polynomial Division

$754 \cdot \frac{2}{7}$
Ex. $7 \longdiv { 5 2 8 0 }$ $\frac{-49}{38}$
$\frac{35}{30}$
$-\frac{28}{2}$

Ex. Divide $6 x^{3}-19 x^{2}+16 x-4$ by $x-2$, and use the results to factor the polynomial completely.

$$
\begin{array}{r}
6 x^{2}-7 x+2 \\
x - 2 \longdiv { 6 x ^ { 3 } - 1 9 x ^ { 2 } + 1 6 x - 4 } \\
\frac{-6 x^{3}+12 x^{2}}{-7 x^{2}+16 x} \\
\frac{+7 x^{2}+14 x}{2 x-4} \\
\frac{-2 x+4}{0}
\end{array}
$$

$$
\begin{aligned}
f(x) & =6 x^{3}-19 x^{2}+16 x-4 \\
& =(x-2)\left(6 x^{2}-7 x+2\right) \\
& =(x-2)(3 x-2)(2 x-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. Divide } x^{2}+\frac{3 x+5 \text { by } x+1}{\sqrt{x+2+\frac{3}{x+1}}} \\
& \begin{array}{l}
x + 1 \longdiv { x ^ { 2 } + 3 x + 5 } \\
\frac{-x^{2} 5 x}{2 x+5} \\
\frac{-2 x+2}{3}
\end{array}
\end{aligned}
$$

Ex. Divide $x^{3}-1$ by $x-1$.

$$
\begin{aligned}
& \text { x. Divide } x^{3}-1 \text { by } x-1 \\
& \begin{array}{l}
\frac{x^{2}+x+1}{} \\
\begin{array}{l}
\frac{-x^{2}+x^{2}+x}{x^{2}+0 x^{2}+0 x-1} \\
\frac{-x+1}{0}
\end{array}
\end{array}
\end{aligned}
$$

Ex. Divide $2 x^{4}+4 x^{3}-5 x^{2}+3 x-2$ by $x^{2}+2 x-3$.

$$
\begin{array}{r}
\frac{2 x^{2}+1}{x ^ { 2 } + 2 x - 3 \longdiv { 2 x ^ { 4 } + 4 x ^ { 3 } - 5 x ^ { 2 } + 3 x - 2 }} \\
\frac{-2 x^{4}+4 x^{3}+6 x^{2}}{x^{2}+3 x-2} \\
\frac{-x^{2}+2 x+3}{x+1} \\
\left.2 x^{2}+1+\frac{x+1}{x^{2}+2 x-3}\right]
\end{array}
$$

Ex. Divide $x^{4}-10 x^{2}-2 x+4$ by $x+3$.

$$
1 x^{3}-3 x^{2}-1 x+1+\frac{1}{x+3}
$$

Ex. Show that $(x-2)$ and $(x+3)$ are factors of $f(x)=2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$, then find the remaining factors.

$$
\begin{aligned}
f(x) & =2 x^{4}+7 x^{3}-4 x^{2}-27 x-18 \\
& =(x-2)\left(2 x^{3}+11 x^{2}+18 x+9\right) \\
& =(x-2)(x+3)\left(2 x^{2}+5 x+3\right) \\
& =(x-2)(x+3)(2 x+3)(x+1)
\end{aligned}
$$

Zeroes of a Polynomial

Fundamental Theorem of Algebra

If a polynomial has degree n, then it has exactly n zeroes.

- This includes repeating zeroes
- Some of the zeroes may be complex numbers
- If k is a zero, then the polynomial can be divided by $(x-k)$
- We know that the zeroes exist, though we may not be able to find them
a) $f(x)=x-2$ has one zero, $x=2$
b) $f(x)=x^{2}-6 x+9$ has two zeroes, $x=3$ and $x=3$
c) $f(x)=x^{3}+4 x$ has three zeroes, $x=0, x=2 i$, and $x=-2 i$
d) $f(x)=x^{4}-1$ has four zeroes, $x=1, x=-1$,

$$
x=i \text {, and } x=-i
$$

To help us find zeroes, we can use:

Rational Zero Test

If a polynomial has integer coefficients, every rational zero has the form

$$
\frac{p}{q}
$$

where $p=$ factor of constant coefficient
$q=$ factor of lead coefficient

Ex. Factor $f(x)=1 x^{4}-x^{3}+x^{2}-3 x-6$.

$$
\frac{3}{1} \frac{2}{1} \frac{6}{1}
$$

$$
\begin{aligned}
& x,(2), 3,6,-1),-2,-3,-6 \\
& f(1)=1^{4}-1^{3}+1^{2}-3(1)-6=1-1+1-3-6=-26 \\
& f(-1)=(-1)^{4}-(-1)^{3}+(-1)^{2}-3(-1)-6=1+1+1+3-6=0 \sqrt{\longrightarrow} x=-1 \text { is a zero } \\
& -1 \left\lvert\, \begin{array}{ccccc}
1 & -1 & 1 & -3 & -6 \\
& -1 & 2 & -3 & 6 \\
\hline 1 & -2 & 3 & -6 & 0
\end{array}\right. \\
& \left.f(-1)=(-1)-(-1)^{3}+(-1)^{2}-3(-1)-6=1+1+1+3-6=0 \sqrt{2}\right) \text { is a factor } \\
& f(2)=2^{4}-2^{3}+2^{2}-3(2)-6=16-8+4-6-6=0 \quad \checkmark(x-2) \text { is a factor } \\
& 2 \begin{array}{cccc}
& \begin{array}{rrrr}
1 & -2 & 3 & -6 \\
& 2 & 0 & 6 \\
\hline 1 & 0 & 3 & 0
\end{array}
\end{array} \\
& \begin{aligned}
f(x) & =(x+1)\left(x^{3}-2 x^{2}+3 x-6\right) \\
& =(x+1)(x-2)\left(x^{2}+3\right)
\end{aligned}
\end{aligned}
$$

Ex. Find all real solutions of $2 x^{3}+3 x^{2}-8 x+3=0$
$f(1)=2(1)^{3}+3(1)^{2}-8(1)+3=2+3-8+3=0 \longrightarrow(x-1)$ is a factor

$$
\begin{aligned}
& 2 x^{3}+3 x^{2}-8 x+3=0 \\
& (x-1)\left(2 x^{2}+5 x-3\right)=0 \\
& (x-1)(2 x-1)(x+3)=0 \\
& x=1 \quad x=\frac{1}{2} \quad x=-3
\end{aligned}
$$

If a complex number is a zero of a polynomial, then so is the conjugate.

Ex. Find a fourth-degree polynomial that has $1,-1$, and $3 i \rightarrow-3 i$ as zeroes.

$$
\begin{aligned}
\begin{array}{l}
\text { zeroes } \\
1
\end{array} & \longrightarrow x-1 \\
-1 & \longrightarrow x+1 \\
3 i & \longrightarrow x-3 i \\
-3 i & \longrightarrow x+3 i
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\underbrace{(x-1)(x+1)}(x-3 i)(x+3 i) \\
& =\left(x^{2}-1\right)\left(x^{2}-9 i^{2}\right) \\
& =\left(x^{2}-1\right)\left(x^{2}+9\right) \\
& =\left(x^{4}+8 x^{2}-9\right.
\end{aligned}
$$

Ex. Find all zeroes of $f(x)=x^{4}-3 x^{3}+6 x^{2}+2 x-60$ given that $1+3 i$ is a zero.

Mathematical Modeling

y is directly proportional to x if $y=k x$ for some constant k
k is called the constant of proportionality
We also say varies directly

Ex. The state income tax is directly proportional to gross income. If the tax is $\$ 46.05$ for an income of $\$ 1500$, write a mathematical model for income tax.
i : income

$$
\begin{aligned}
t & =k i \\
\frac{46.05}{1500} & =\frac{k(1500)}{1500} \\
k & =.0307 \\
t & =.0307 i
\end{aligned}
$$

$$
t=46.0 \mathrm{~g} \rightarrow i=1500
$$

y is directly proportional to the $n^{\text {th }}$ power to x if $y=k x^{n}$ for some constant k

Ex. The distance a ball rolls down a hill is directly proportional to the square of the time it rolls. During the first second, the ball rolls 8 ft. Write an $\left\{\begin{array}{l}t=1 \\ \text { equation for this model. How long does it take for }\end{array}\left\{\begin{array}{l}d=8\end{array}\right.\right.$ the ball to roll 72 ft ?
$d=$ distance
$t=$ time

$$
\begin{aligned}
& d=k t^{2} \\
& 8=k(1)^{2} \\
& 8=k
\end{aligned}
$$

$$
d=8 t^{2}
$$

$$
\begin{aligned}
& \frac{72}{8}=\frac{8 t^{2}}{8} \\
& \sqrt{9}=\sqrt{t^{2}}
\end{aligned} \rightarrow t=3
$$

y is inversely proportional
for some constant k to if $y=\frac{k}{x}$
We also say varies inversely
z is jointly proportional to x and y if $z=k x y$ for some constant k

We also say varies jointly

Ex. The simple interest for a savings account is jointly proportional to the time ${ }^{t}$ and the principal. ${ }^{\rho}$ After one quarter, the interest on a principal of $\$ 5000$ is $\$ 43.75$. Write an equation for this model.

$$
i=k t p
$$

$$
\begin{aligned}
& x=\frac{1}{4} \\
& p=5000 \\
& i=43.75
\end{aligned}
$$

$$
43.75=k\left(\frac{1}{4}\right)(5000)
$$

$$
i=.03 \mathrm{St} p
$$

$$
\begin{aligned}
\frac{43.75}{1250} & =\frac{k(1250)}{1250} \\
k & =.035
\end{aligned}
$$

In the real world, you will have data points and will want to find a function to describe the situation.

1996	Insured commercial banks, \boldsymbol{y}
1997	9.53
1998	9.14
1999	8.77
2000	8.58
2001	8.32

Ex. Use your calculator to find a linear regression for the data below.

Year	Prize money, \boldsymbol{P}
1995	8.06
1996	8.11
1997	8.61
1998	8.72
1999	9.05
2000	9.48
2001	9.61
2002	10.03
2003	10.15
2004	10.25

