

Ex. Divide $6x^3 - 19x^2 + 16x - 4$ by x - 2, and use the results to factor the polynomial completely.

$$\frac{6x^{2} - 7x + 2}{(5x^{2} - 7x)^{2} + (6x^{2} - 4)^{2}}$$

$$\frac{-6x^{3} + 12x^{2}}{-7x^{2} + 16x}$$

$$\frac{+7x^{2} + 14x}{2x - 4}$$

$$\frac{-2x + 4}{0}$$

$$f'(x) = (x^{3} - 19x^{2} + 16x - 4)$$

= $(x - 2)(6x^{2} - 7x + 2)$
= $((x - 2)(3x - 2)(2x - 1)$

Ex. Divide $x^2 + 3x + 5$ by x + 1x + 2 + X+ X+1) + 3 + 5- x² F x 2x+5 -2x +2 3

Ex. Divide $x^3 - 1$ by x - 1. X + X $(X - 1) x^{3} + 0 x^{2} + 0 x - 1$ 4 χ $+0 \times$ \checkmark X

Ex. Divide
$$2x^4 + 4x^3 - 5x^2 + 3x - 2$$
 by $x^2 + 2x - 3$.
 $\begin{array}{r} 2x^2 + 1 \\ x^2 + 2x - 3 \end{array}) \overline{2x^4 + 4x^3 - 5x^2 + 3x - 2} \\ - 2x^4 + 4x^3 + 6x^2 \\ x^2 + 3x - 2 \\ - x^2 + 2x + 3 \\ \hline x + 1 \\ \hline \\ 2x^2 + 1 + \frac{x + 1}{x^2 + 2x - 3} \end{array}$

Synthetic Division (for a Cubic Polynomial) To divide $ax^3 + bx^2 + cx + d$ by x - k, use the following pattern. $k \mid a \mid b \mid c \mid d \leftarrow Coefficients of dividend$

Vertical pattern: Add terms. Diagonal pattern: Multiply by k.

.

Ex. Show that (x-2) and (x + 3) are factors of $f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18$, then find the remaining factors.

$$f(x) = 2x^{4} + 7x^{3} - 4x^{2} - 27x - 18$$

= $(x-2)(2x^{3} + 11x^{2} + 18x + 9)$
= $(x-2)(x+3)(2x^{2} + 5x + 3)$
= $(x-2)(x+3)(2x+3)(x+1)$

Zeroes of a Polynomial

<u>Fundamental Theorem of Algebra</u> If a polynomial has degree *n*, then it has exactly *n* zeroes.

- This includes repeating zeroes
- Some of the zeroes may be complex numbers
- If k is a zero, then the polynomial can be divided by (x k)

- We know that the zeroes exist, though we may not be able to find them

a)
$$f(x) = x - 2$$
 has one zero, $x = 2$

b)
$$f(x) = x^2 - 6x + 9$$
 has two zeroes, $x = 3$
and $x = 3$

c)
$$f(x) = x^3 + 4x$$
 has three zeroes, $x = 0$, $x = 2i$,
and $x = -2i$

d)
$$f(x) = x^4 - 1$$
 has four zeroes, $x = 1$, $x = -1$,
 $x = i$, and $x = -i$

To help us find zeroes, we can use:

Rational Zero Test

If a polynomial has integer coefficients, every rational zero has the form

$\frac{p}{q}$

where p = factor of constant coefficientq = factor of lead coefficient

$$\frac{\text{Ex. Factor } f(x) = |x^4 - x^3 + x^2 - 3x - 6}{|x_1|^2 - 3x - 6} = \frac{3}{1} = \frac{2}{1} = \frac{6}{1} + \frac{1}{1}$$

$$f(x) = |x^4 - x^3 - 2x^2 - 3x - 6$$

$$f(x) = |x^4 - x^3 - 2x^2 - 3x - 6$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

$$f(x) = |x^4 - x^3 - 6 = -26$$

Ex. Find all real solutions of $2x^3 + 3x^2 - 8x + 3 = 0$ 3 $\frac{3}{2}, 3, \frac{1}{2}, (1), \frac{3}{2}, -3, \frac{1}{2}, -1$ $f(1) = 2(1)^{3} + 3(1)^{2} - 8(1) + 3 = 2 + 3 - 8 + 3 = 0$ (x-1) is a factor

2 -8 -8 -32 -3 -3-3 0

 $2x^{3}+3x^{2}-8x+3=0$ $(x-1)(2x^{2}+5x-3)=0$ (x-1)(2x-1)(x+3)=0|x=-31 X= -2 | X=1

If a complex number is a zero of a polynomial, then so is the conjugate.

<u>Ex.</u> Find a fourth-degree polynomial that has 1, -1, and $3i \rightarrow -3$, as zeroes.

Ex. Find all zeroes of $f(x) = x^4 - 3x^3 + 6x^2 + 2x - 60$ given that 1 + 3i is a zero.

Mathematical Modeling

y is <u>directly proportional</u> to *x* if y = kx for some constant *k*

k is called the constant of proportionality

We also say <u>varies directly</u>

Ex. The state income tax is directly proportional to gross income. If the tax is \$46.05 for an income of \$1500, write a mathematical model for income tax.

: income
$$t = k i$$

: tax $\frac{46.05 = k(1500)}{1500}$
 $k = .0307$
 $t = .0307 i$

t=46.05 -> ;= 1500

y is <u>directly proportional to the n^{th} power</u> to x if $y = kx^n$ for some constant k

Ex. The distance a ball rolls down a hill is directly proportional to the square of the time it rolls. During the first second, the ball rolls 8 ft. Write an equation for this model. How long does it take for d = 8the ball to roll 72 ft? $d = 8t^2$

d: distance t: time

 $d = k t^{2}$ $8 = k (1)^{2}$ 8 = k

y is <u>inversely proportional</u> to x if $y = \frac{k}{x}$ for some constant k

We also say <u>varies inversely</u>

z is jointly proportional to *x* and *y* if z = kxy for some constant *k*

We also say <u>varies jointly</u>

<u>Ex.</u> The simple <u>interest</u> for a savings account is jointly proportional to the <u>time</u> and the <u>principal</u>. After one quarter, the interest on a principal of \$5000 is \$43.75. Write an equation for this model.

i = k t p $43.75 = k (\frac{1}{4})(5000)$ 43.75 = k (12.50) $1250 \qquad 1250$ k = .035

i = .035tp

p= 5000 i=43.75

In the real world, you will have data points and will want to find a function to describe the situation.

Year	Insured commercial banks, y
1996	9.53
1997	9.14
1998	8.77
1999	8.58
2000	8.32
2001	8.08

<u>Ex.</u> Use your calculator to find a linear regression for the data below.

Year	Prize money, p
1995	8.06
1996	8.11
1997	8.61
1998	8.72
081531999 dy	/ Rosel9.05
2000	9.48
2001	9.61
2002	10.03
2003	10.15
2004	10.25