Rational Functions and Asymptotes
A rational function looks like

f(x):M

q(x) |
where p(x) and q(x) are polynomials.

Ex. State the domain of f (x) =~ 3
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Look at the graph of the last example.

Note that the y-coordinate goes to infinity
as X gets close to 2.

We say that f (x) has a vertical asymptote
of x = 2.

Note that the height approaches y = 1 as the
graph goes left and right

We say that f (x) has a horizontal
asymptote of y = 1.




Vertical Asymptotes

- values of x that make the bottom equal O...

- unless they cause the top to be zero as
well

Horizontal Asymptotes

- look at lead terms on top and bottom

- ask what happens as X = «©
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EX. Find all asymptotes of )
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Graphing Rational Functions

1) Evaluate f (0) — Gives y-intercept

2) Factor top and bottom — cancelled factors
are holes

3) Zeroes of the top — Gives x-intercepts

4) Zeroes of the bottom — Gives vert. asympt.

5) Let X = oo — Gives horiz. asympt.

6) Plot more points If needed
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EXx. Graph f(x)=
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EXx. Graph f(x) =
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When the degree on top Is one more than the
degree on the bottom, there won't be a
horizontal asymptote.

However, If we do the division, we can find
a slant asymptote.
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EXx. Graph f(x) =
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EX. Arectangular page with margins shown below is
designed to have 48 in? of print. What should the
dimensions be for the page that uses the least paper?
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