Rational Functions and Asymptotes

A rational function looks like

$$
f(x)=\frac{p(x)}{q(x)}
$$

where $p(x)$ and $q(x)$ are polynomials.
Ex. State the domain of $f(x)=\frac{x+3}{x-2}$.

$$
x \neq 2
$$

Look at the graph of the last example.
Note that the y-coordinate goes to infinity as x gets close to 2 .

We say that $f(x)$ has a vertical asymptote of $x=2$.

Note that the height approaches $y=1$ as the graph goes left and right

We say that $f(x)$ has a horizontal asymptote of $y=1$.

Vertical Asymptotes

- values of x that make the bottom equal $0 . .$.
- unless they cause the top to be zero as well

Horizontal Asymptotes

- look at lead terms on top and bottom
- ask what happens as $x \rightarrow \infty$

Ex. Find all asymptotes of
a) $f(x)=\frac{3 x+2 x^{2}}{x^{2}-1}=\frac{x(3+2 x)}{(x+1)(x-1)}$
h.a. as $x \rightarrow \infty, f \rightarrow \frac{2 x^{2}}{x^{2}}=2$

$$
y=2
$$

v.a. $(x+1)(x-1)=0$

$$
x=-1 \quad x=1
$$

b) $f(x)=\frac{x^{2}+x-2}{x^{2}-x-6}=\frac{(x+2)(x-1)}{(x-3)(x+2)}=\frac{x-1}{x-3}$
$x \neq 3,-2$
h.a. as $x \rightarrow \infty, f \rightarrow \frac{x^{2}}{x^{2}}=1$

$$
y=1
$$

$$
\begin{aligned}
& \text { v.a. }(x-3)(x+2)=0 \\
& x=3 \\
& f(x)=\frac{x-1}{x-3} \Rightarrow f(-2)=\frac{-2-1}{-2 \cdot 3}=\frac{3}{5}
\end{aligned}
$$

Graphing Rational Functions

1) Evaluate $f(0)$ - Gives y-intercept
2) Factor top and bottom - cancelled factors are holes
3) Zeroes of the top - Gives x-intercepts
4) Zeroes of the bottom - Gives vert. asympt.
5) Let $x \rightarrow \infty$ - Gives horiz. asympt.
6) Plot more points if needed

Ex. Graph $f(x)=\frac{3}{x-2}$

1) $f(0)=\frac{3}{0-2}=-\frac{3}{2} \leftarrow y$-int.
2)
3) $3=0 \ll$ no x-int.
4) $x-2=0$
$x=2 \leftarrow$ vert. asymp.
5) as $x \rightarrow \infty, f \rightarrow \frac{3}{x}=0$
$y=0 \leftarrow$ horiz. asymp.
6) $f(3)=\frac{3}{3-2}=3$

Ex. Graph $f(x)=\frac{2 x-1}{x}$

1) $f(0)=\frac{2(0)-1}{0}=\not \longleftarrow_{\text {no }}^{x} y$-int.
2)
3) $2 x-1=0 \rightarrow x=\frac{1}{2} \leftarrow x$-int.
4) $x=0 \longleftarrow$ vert. as sup.
5) as $x \rightarrow \infty, f \rightarrow \frac{2 x}{x}=2$
$y=2 \leftarrow$ hariz. asymp.
6) $f(-1)=\frac{2(-1)-1}{-1}=\frac{-3}{-1}=3$

Ex. Graph $f(x)=\frac{x}{x^{2}-x-2}=\frac{x}{(x-2)(x+1)}$

1) $f(0)=\frac{0}{0^{2}-0-2}=\frac{0}{-2}=0 \leftarrow y$-int.
2)
3) $x=0 \leftarrow x$-int. vert. as sup.
4) $(x-2)(x+1)=0 \Rightarrow x=2, x=-1^{4}$
5) as $x \rightarrow \infty, f \rightarrow \frac{x}{x^{2}}=\frac{1}{x}=0$
6)

$$
\begin{aligned}
& f(3)=\frac{3}{4} \\
& f(-2)=\frac{-2}{4}=-\frac{1}{2}
\end{aligned}
$$

\downarrow

Ex. Graph $f(x)=\frac{x^{2}-9}{x^{2}-2 x-3}=\frac{(x+3)(x-3)}{(x-5)(x+1)}=\frac{x+3}{x+1}$

1) $f(0)=\frac{a^{2}-9}{e^{2}-2(0)-3}=\frac{-9}{-3}=3 \leftarrow y$-int.
$x=3 \leftarrow$ hole
2)
3) $x+3=0 \Rightarrow x=-3 \leftarrow x$-int.
4) $x+1=0 \Rightarrow x=-1 \leftarrow$ vert. asymp.
5) as $x \rightarrow \infty, f \rightarrow \frac{x}{x}=1$
$y=1 \leftarrow$ horiz. a sym=
6) $f(3)=\frac{3+3}{3+1}=\frac{6}{4}=\frac{3}{2}$

When the degree on top is one more than the degree on the bottom, there won't be a horizontal asymptote.
However, if we do the division, we can find a slant asymptote.

Ex. Graph $f(x)=\frac{x^{2}-x-2}{x-1}=\frac{(x-2)(x+1)}{x-1}$

1) $f(0)=\frac{0-0-2}{0-1}=2 \leftarrow y-$ int.
2)
3) $(x-2)(x+1)=0 \Rightarrow x=2, x=-1 \leftarrow x-$ int.

$$
x - 1 \longdiv { x ^ { 2 } - x - 2 }
$$

4) $x-1=0 \rightarrow x=1 \leftarrow$ vert. a symp.

Ex. A rectangular page with margins shown below is designed to have $48 \mathrm{in}^{2}$ of print. What should the dimensions be for the page that uses the least paper?

