Conics

A conic section is a graph that results from the intersection of a plane and a double cone.

Circle

Ellipse

Parabola

Hyperbola

A parabola is the set of all points that are equidistant from a line (the directrix) and a point (the focus). The vertex is the midpoint between the focus and directrix, and the axis is the line through focus and vertex.

A parabola with vertex $(0,0)$ and directrix $y=-p$ has the equation $x^{2}=4 p y$

1) ρ is dist. from vertex to focus/directrix.
2) variable that's not squared
 is direction parabola opens
A parabola with vertex $(0,0)$ and directrix $x=-p$ has the equation $y^{2}=4 p x$

Ex. Find the focus and directrix of the parabola $y=-2 x^{2}$.
$x^{2}=4 p y$

$$
x^{2}=-\frac{1}{2} y
$$

$$
4_{p y}=-\frac{1}{2} y
$$

$$
\frac{4_{p}}{4}=-\frac{1}{2} \frac{1}{4}
$$

$$
p=-\frac{1}{8}
$$

up/ down \rightarrow y not speed
down \rightarrow coif. is

neg.
neg.

Ex. Find the equation of the parabola with vertex at the origin and focus at $(2,0)$.

$$
\begin{aligned}
& y^{2}=4 \rho x \\
& y^{2}=4(2) x \\
& y^{2}=8 x
\end{aligned}
$$

An ellipse is the set of all points, the sum of whose distances from two points (foci) is constant. The major axis goes through the foci, the minor axis is perpendicular to the major axis at the center.

An ellipse centered at $(0,0)$ with horizontal axis length $2 a$ and vertical axis length $2 b$ has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$a=$ barit. "radius
$b=$ vert. "radius"
The vertices and foci lie on the major (longer) axis. The foci lie c units from the center, where $c^{2}=a^{2}-b^{2}$.

Ex. Sketch a graph of the ellipse $4 x^{2}+y^{2}=36$, and identify the vertices and foci.

$$
\begin{aligned}
& \frac{4 x^{2}}{36}+\frac{y^{2}}{36}=\frac{36}{36} \\
& \frac{x^{2}}{9}+\frac{y^{2}}{36}=1 \\
& a^{2} \\
& a=3 \\
& b=6 \\
& c^{2}=b^{2}-a^{2} \\
& \begin{array}{l}
c=b^{2}-{ }^{2} \\
c^{2}=6^{2}-3^{2}
\end{array} \\
& c^{2}=36-9 \\
& \begin{array}{l}
c^{2}=27 \\
c=\sqrt{27}
\end{array}
\end{aligned}
$$

Ex. Find the equation of the ellipse shown below.
$(-3,0)$

$a=3$
$c^{2}=a^{2}-b^{2}$
$z^{2}=3^{2}-b^{2}$
$c=2$
$2^{2}=3$
$4=9$
$b=$?

$$
\begin{aligned}
& 4=9-b^{2} \\
& -5=-b^{2} \\
& \sqrt{5}=\sqrt{b^{2}}
\end{aligned} \quad b=\sqrt{5}
$$

A hyperbola is the set of all points, the difference of whose distances from two points (foci) is constant. The transverse axis is the line connecting the vertices, and the midpoint of the transverse axis is the center.

$d_{2}-d_{1}$ is a positive constant.

A hyperbola centered at $(0,0)$ with a horizontal transverse axis has equation
opens in direction pos. variable

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Atyperbola centered at $(0,0)$ with a vertical transverse axis has equation

The foci lie c units from the center, where $c^{2}=a^{2}+b^{2}$.

Ex. Sketch a graph of the hyperbola $\frac{4 x^{2}}{16}-\frac{y^{2}}{16}=\frac{16}{16}$, and identify the foci.

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
\begin{array}{ll}
a^{2} & \frac{x^{2}}{x^{4}}-\frac{y^{2}}{16}=1 \\
a=2 & b^{2} \\
b=4 & c^{2}=a^{2}+b^{2} \\
c^{2}=2^{2}+4^{2} \\
c^{2}=4+16 \\
& c^{2}=20 \\
& \\
& \\
& =\sqrt{20}
\end{array}
$$

Ex. Find the equation of the hyperbola shown below.

Shifted Conics

In the last section, all conics were centered at the origin.

To move the center to the point (h, k), we replace x with $(x-h)$ and y with $(y-k)$ in the equations

Parabola: Vertex $=(h, k)$

Ellipse: Center $=(h, k)$

Hyperbola: Center $=(h, k)$

Ex. Identify and graph $\frac{(x-2)^{2}}{\lambda^{9}}+\frac{(y-1)^{2}}{4}=1 \quad$ ellipse

$$
\text { center: } \begin{aligned}
& (2,1) \\
a & =3 \\
b & =2
\end{aligned}
$$

Ex. Identify and graph $\frac{(x-3)^{2}}{1}-\frac{(y-2)^{2}}{9}=1 \quad$ hyper bola center: $(3,2)$

$$
\begin{aligned}
& a=1 \\
& b=3
\end{aligned}
$$

Ex. Identify and graph $\frac{(x+3)^{2}}{16}+\frac{(y-2)^{2}}{16}=\frac{16}{16}$

$$
\begin{aligned}
& \quad \frac{(x+3)^{2}}{16}+\frac{(y-2)^{2}}{16}=1 \\
& \text { center: }(-3,2) \\
& a=4 \\
& b=4
\end{aligned}
$$

Ex. Find the vertex and focus of the parabola

$$
\begin{gathered}
x^{2}-2 x+4 y-3=0 \\
x^{2}-2 x+\frac{1}{1}=-4 y+3+1 \\
(x-1)^{2}=-4 y+4 \\
(x-1)^{2}=-4(y-1) \\
(x-h)^{2}=4 p(y-k)^{2} \\
4 p=-4 \\
p=-1
\end{gathered}
$$

$$
(x-h)^{2}=4 p(y-k)
$$

vertex: $(1,1)$
focus: $(1,0)$

Ex. Sketch $x^{2}+4 y^{2}+6 x-8 y+9=0$

$$
\begin{aligned}
& x^{2}+6 x+4 y^{2}-8 y=-9 \\
& \left(x^{2}+6 x+9\right)+4\left(y^{2}-2 y+1\right)=-9+9+4 \\
& \frac{(x+3)^{2}}{4}+\frac{4(y-1)^{2}}{4}=\frac{4}{4} \\
& \frac{(x+3)^{2}}{4}+\frac{(y-1)^{2}}{1}=1 \\
& \text { center: }(-3,1) \\
& a=2
\end{aligned}
$$

Ex. Sketch $-4 x^{2}+y^{2}+24 x+4 y-41=0$

$$
\begin{aligned}
& -4 x^{2}+24 x+y^{2}+4 y=41 \\
& -4\left(x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right)=41+-36+4 \\
& \frac{-4 /(x-3)^{2}}{9 / 4}+\frac{(y+2)^{2}}{9}=\frac{9}{9} \\
& \frac{(y+2)^{2}}{9}-\frac{(x-3)^{2}}{9 / 4}=1 \\
& \text { center: }(3,-2) \\
& a=3 / 2 \\
& b=3
\end{aligned}
$$

hyperbola

Ex. The vertices of an ellipse are $(2,-2)$ and $(2,4)$, and the length of the minor axis is 4 . Find the equation of the ellipse.

$$
\text { center: }(2,1)
$$

$$
a=2
$$

$$
b=3
$$

$$
\frac{(x-2)^{2}}{2^{2}}+\frac{(y-1)^{2}}{3^{2}}=1
$$

