First part is out of 25 pts.
Second part is out of 80 pts .
Total points possible is 105 pts .
\rightarrow Grade is out of 100 pts .

Exponential Functions
An exponential function is of the form $f(x)=a^{x}$, where $a>0 . a$ is called the base.

Ex. Let $h(x)=3.1^{x}$, evaluate $h(-1.8)$.

$$
h(-1.8)=3.1^{-1.8}=.13
$$

Ex. Sketch $f(x)=2^{x}$ and $g(x)=4^{x}$

$$
\begin{array}{l|l|l}
x & f(x)=2^{x} & g(x)=4^{x} \\
\hline-3 & 2^{-3}=\frac{1}{2^{3}}=\frac{1}{6} & 4^{-3}=\frac{1}{4^{3}}=\frac{1}{6^{4}} \\
-2 & 2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} & 4^{-2}=\frac{4^{2}}{4^{2}}=\frac{16}{6} \\
-1 & 2^{-1}=\frac{1}{2^{2}}=\frac{4^{2}}{4^{-1}}=\frac{1}{4^{-}}=\frac{1}{4} \\
0 & 2^{0}=1 & 4^{0}=1 \\
1 & 2^{1}=2 & 4^{1}=4 \\
2 & 2^{2}=4 & 4^{2}=16 \\
3 & 2^{3}=8 & 4^{3}=64
\end{array}
$$

Ex. Sketch $f(x)=2^{-x}$

x	$f(x)=2^{-x}$
-3	$2^{-(-3)}=2^{3}=8$
-2	$2^{-(-2)}=2^{2}=4$
-1	$2^{-(-1)}=2^{1}=2$
0	$2^{-6}=1$
1	$2^{-1}=\frac{1}{2}$
2	$2^{-2}=\frac{1}{4}$
3	$2^{-3}=\frac{1}{8}$

Note that every exponential function has

- Domain of all reals
- Range of $y>0$
- Horizontal asymptote at $y=0$

Because they are monotonic, these functions are one-to-one

Let $a>0$ and $a \neq 1$. If $a^{x}=a^{y}$, then $x=y$.

Ex. Solve for x.
a) $9^{x}=3^{x+1}$

$$
\left(3^{2}\right)^{x}=3^{x+1}
$$

$$
x=1
$$

$3^{2 x}=3^{x+1}$

$$
2 x=x+1
$$

b)

$$
\begin{aligned}
& (1 / 2)^{x}=8 \\
& \left(2^{-1}\right)^{x}=2^{3}
\end{aligned}
$$

$$
-x=3
$$

$$
x=-3
$$

Ex. Sketch the graph of $f(x)=1-3^{x} .=-3^{x}+1$

$$
y=3^{x}
$$

$y=-3^{x}$

The number $e \approx 2.718281828$ is called the Euler natural base and the function $f(x)=e^{x}$ is called the natural exponential function.

We will see this function come up in some application problems, especially investment problems where interest is compounded continuously.

Ex. Let $f(x)=e^{x}$, evaluate $f(3.2)$

$$
f(3.2)=e^{3.2}=24.53
$$

Ex. Use a calculator to graph $f(x)=2 e^{24 x}$ and $g(x)=\frac{1}{2} e^{-.58 x}$

When interest is compounded n times per year, we used the formula

$$
\begin{aligned}
& \qquad A=P\left(1+\frac{r}{n}\right)^{n t} \quad \begin{aligned}
A & =\text { amount in bank } \\
P & =\text { principalinvested } \\
r & =\text { interest rate } \\
t & =\text { time(in years) }
\end{aligned} \\
& \text { If interest is compounded continually, we }
\end{aligned}
$$ use the formula

$$
A=P e^{r t}
$$

Ex. You invest $\$ 12,000 \stackrel{=}{\mathrm{P}}$ at an annual rate of $\underset{\text { (9\%. How }}{\longrightarrow} r=.09$ much more can you make in(5)years if interest is $\longrightarrow t=5$ compounded continually rather than monthly?

$$
\begin{aligned}
& \frac{\text { mon } h / 1 y}{n}=12 \\
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
&=12000\left(1+\frac{.09}{12}\right)^{12.5} \\
&=18,788.17
\end{aligned}
$$

$$
\begin{aligned}
& \text { anther than monthly? } \\
& \begin{aligned}
\text { continuously }
\end{aligned} \\
& \begin{aligned}
A & =P e^{r t} \\
& =12000 e^{(.09)(s)} \\
& =18,819.75
\end{aligned}
\end{aligned}
$$

Ex. After the Chernobyl nuclear accident in 1986, the amount remaining after t years from a 10 pound sample of plutonium can be modeled by the function

$$
P=10\left(\frac{1}{2}\right)^{1 / 24,100}
$$

How much of this sample remains $\frac{\text { today? }}{t=35}$

$$
p=10\left(\frac{1}{2}\right)^{33 / 24100}=9.9899
$$

Logarithmic Functions

We saw that exponential functions are invertible.

The logarithmic function $f(x)=\log _{a} x$ is the inverse function of $g(x)=a^{x}$.

$$
y=\log \oplus \quad \rightarrow \quad a^{y}=x
$$

Ex. Evaluate by hand.
a) $32=x \rightarrow 32=2^{x} \rightarrow x=5$
b) ta a $=x \rightarrow 1=3^{x} \rightarrow x=0$
c) $\log 3^{=x} \rightarrow 3=9^{x} \longrightarrow \begin{aligned} & 3=\left(3^{2}\right)^{x} \\ & 3^{\prime}=3^{2 x}\end{aligned} \rightarrow \begin{aligned} & 1=2 x \\ & x=\frac{1}{2}\end{aligned}$
d) $100^{\frac{1}{100}}=x \rightarrow \frac{1}{100}=10^{x} \rightarrow \frac{1}{10^{2}}=10^{x}$

$$
\begin{aligned}
& \frac{1}{10^{2}}=10^{x} \\
& 10^{-2}=10^{x} \rightarrow x=-2
\end{aligned}
$$

The logarithmic function with base 10 is called the common logarithm is can be written $f(x)=\log x$

Ex. Given the function $f(x)=\log x$, evaluate $f(2.5)$ and $f(-2)$.

$$
\begin{aligned}
& f(2.5)=\log (2.5)=0.398 \\
& f(-2)=\log (-2)=? ? ?
\end{aligned}
$$

Ex. Use the graph of $f(x)=2^{x}$ to sketch

Note that every logarithmic function has

- Domain of $x>0$
- Range of all reals
- Vertical asymptote at $x=0$

Ex. Sketch the graph of $f(x)=1-\log x$

Properties of Logarithms

$$
\begin{array}{lll}
a^{0}=1 & \leftrightarrow & \log _{a} 1=0 \\
a^{1}=a & \leftrightarrow & \log _{a} a=1
\end{array}
$$

Since exponents and logarithms are inverse, $a^{\log _{a} x}=x$ and $\log _{a} a^{x}=x$

Since logarithms are one-to-one, we know:

$$
\text { If } \log _{a} x=\log _{a} y \text {, then } x=y \text {. }
$$

Ex. Simplify
a) $\log _{4} 1=0$
b) $\log _{8} 8=1$
c) $\log _{6} 6^{20}=20$

Ex. Solve
a) 10

$$
\begin{aligned}
\log _{3} 4 x & =\log _{3} 20 \\
4 x & =20 \\
x & =5
\end{aligned}
$$

b)

$$
\begin{aligned}
& \log \left(\frac{2 x+1)}{2 x+}\right.=\log x \\
& 2 x+1=x \\
&-2 x \\
& 1=-x
\end{aligned}
$$

The function $f(x)=\log _{e} x$ is called the natural logarithm function, and it is often written

$$
f(x)=\ln x
$$

Ex. Evaluate the natural \log function at $x=3$ and $x=-4$

$$
\begin{aligned}
& f(3)=\ln 3=1.10 \\
& f(-4)=\ln (-4)=? ?
\end{aligned}
$$

Ex. Simplify
a) $\ln \frac{1}{e}=\ln _{\mathrm{e}}\left(e^{-1}\right)=-1$
b) $\ln e^{5}=S$
c) $8 \underbrace{\ln 1}_{0}=0$
d) $2{\underset{1}{\ln } e^{\prime}}_{1}=2$

Ex. Identify the domain
a) $f(x)=\ln (x-2)$

$$
\begin{gathered}
x-2>0 \\
\mid x>2
\end{gathered}
$$

b) $f(x)=\ln (2-x)$

$$
\begin{array}{r}
2-x>0 \\
2>x \\
x<2
\end{array}
$$

c) $f(x)=\ln \left(x^{2}\right)$

$$
x \neq 0
$$

