Exponential and Logarithmic Equations
Ex. Solve for x
a) $2^{x}=32$

$$
\begin{aligned}
& 2^{x}=32 \\
& 2^{x}=2^{5}
\end{aligned} \longrightarrow x=5
$$

b)

$$
\begin{gathered}
\ln x-\ln 3=0 \\
\ln x=\ln 3
\end{gathered} \longrightarrow x=3
$$

c)

$$
\begin{aligned}
\left(\frac{1}{3}\right)^{x} & =9 \\
\left(3^{-1}\right)^{x} & =3^{2}
\end{aligned} \longrightarrow 3^{-x}=3^{2}
$$

Ex. Solve for x
d) (e $x=-3 \rightarrow x: e^{-3}$
e) $\log x=-1 \rightarrow x=10^{-1}$
f)

$$
\begin{aligned}
& e^{x^{2}}=e^{-3 x+4} \\
& x^{2}=-3 x+4 \\
& x^{2}+3 x-4=0 \\
& (x+4)(x-1)=0 \\
& x--4 x=1
\end{aligned}
$$

Ex. Solve for x
g)

$$
\begin{aligned}
& \frac{3\left(2^{x}\right)}{x}=\frac{42}{3} \\
& \ln \left(2^{x}\right)=人(14)
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left(2^{x}\right)=\ln 14 \\
& \frac{x \ln z}{\operatorname{lo}=\frac{\ln 14}{\ln 2}} \\
& x=\frac{\ln 14}{\ln 2}
\end{aligned}
$$

$$
\begin{gathered}
\text { h) } \begin{array}{c}
e^{x}+5=60 \\
-5 \\
-5 \\
\ln e^{x}=\ln 55 \\
x=\ln 55
\end{array}
\end{gathered}
$$

Ex. Solve for x
i) $2\left(3^{2 x-5}\right)-4 / 4=11$

$$
\frac{2\left(3^{2 x-5}\right)}{2}=\frac{15}{2}
$$

$$
2 x-5=\frac{\ln \left(\frac{15}{2}\right)}{\ln 3}+5
$$

$$
\text { ts } 0(\underline{15})^{+5}
$$

$$
\frac{2 x=\frac{h\left(\frac{15}{2}\right)^{+5}}{l-3}+5}{1\left(\frac{15}{+5}\right.}
$$

$$
x=\frac{\frac{\ln \left(\frac{15}{2}\right)}{\ln 3}+5}{2}
$$

Ex. Solve for x

$$
\begin{aligned}
& \text { j } 2\left(5 e^{2 x}\right) \neq\left(e^{x-3)}\right. \\
& \ln \left(5 \cdot e^{2 x}\right)=\ln \left(e^{x-3}\right) \\
& \ln 5+\ln \left(e^{2 x}\right)=x-3 \\
& \begin{aligned}
& \ln 5+2 x=x-3 \\
&-x
\end{aligned} \\
& x s+x=-3 \\
& \text { h } \mathrm{h} \\
& x=-3-\ln 5
\end{aligned}
$$

Ex. Solve for x

$$
\begin{aligned}
& \text { k) } e^{2 x}-3 e^{x}+2=0 \\
& \left(e^{x}\right)^{2}-3 e^{x}+2=0 \\
& \left(e^{x-2}\right)\left(e^{x}-1\right)=0 \\
& e^{x}-2=0 \quad e^{x}-y=0 \\
& +2+2 \quad+1 \\
& h\left(e^{x}\right)=\ln 2 \quad b\left(e^{x}\right)+1 \\
& x=\ln 2 \quad x=0
\end{aligned}
$$

$$
\xrightarrow{y=e^{x}} \quad y^{2}-3 y+2=0
$$

$$
(y-2)(y-1)=0
$$

Ex. Solve for x

1) $x=2 \rightarrow x=e^{2}$
m)

$$
\begin{gathered}
\log _{3}(5 x-1)=\log _{3}(x+7) \\
5 x-1=x+7 \\
4 x=8 \xrightarrow{ } x=2
\end{gathered}
$$

n) $\log _{6}(3 x+14)-\log _{6} 5=\log _{6} 2 x$

$$
\begin{array}{r}
\frac{3 x+14)-\log _{6} 5}{\log _{6}\left(\frac{3 x+14}{5}\right)}=\log _{6}(2 x) \\
\frac{3 x+14}{5}=2 x
\end{array} \longrightarrow 3 x+14=10 x
$$

Ex. Solve for x
p) $5+2 \ln x=4$

$$
\frac{8 \ln x}{2}=\frac{-1}{2}
$$

$$
x=e^{-1 / 2}=\frac{1}{e^{1 / 2}}=\frac{1}{\sqrt{e}}
$$

q) $\frac{2 \log _{5}(3 x)}{2}=\frac{4}{2}$

$$
\begin{array}{r}
3 x=25 \\
x=\frac{25}{3}
\end{array}
$$

Ex. You-bave deposited \$500 in an account that pays
$r: .0675-6.75 \%$ interest, compounded continuously. How
long will it take your money to double)

$$
A=1000
$$

$$
\begin{aligned}
A & =P e^{r t} \\
\frac{1000}{500} & =\frac{500 e^{.0675 t}}{500} \\
\ln (2) & =\ln \left(e^{.0675 t}\right) \\
\frac{\ln 2}{0675} & =\frac{.0675 t}{.0675}
\end{aligned} \quad t=\frac{\ln 2}{.0675}=10.3
$$

Exponential and Logarithmic Models

Exponential Growth

$y=a e^{b x}$

Exponential Decay

$$
y=a e^{-b x}
$$

Ex. The number of households, D, in millions, with HDTV is given by the exponential model $D=30.92 e^{0.1171 t}$, where t is years since 2000 . When will the number of households reach 100 million?

$$
\begin{aligned}
\rightarrow \frac{100}{30.92} & =\frac{30.92 e^{0.1171 t}}{30.92} \\
\ln \frac{100}{30.92} & =\ln e^{0.1171 t} \\
\ln \left(\frac{100}{30.92}\right) & =\frac{0.1171 t}{1171} \\
t & =\frac{\ln \left(\frac{100}{30.92}\right)}{.1171}=10.0
\end{aligned}
$$

Ex. The number N of bacteria in a culture is modeled by $N=450 e^{k t}$, where t is time in hours. If $N=600$ when $t=3$, estimate the value of N when $t \equiv 5$

$$
\begin{aligned}
& \left.\begin{array}{c}
N=600 \\
k=3
\end{array}\right\} \rightarrow \begin{array}{l}
N=450 e^{k t} \\
\frac{600}{450}=\frac{450 e^{k(3)}}{450} \\
\ln \frac{600}{450}=2 e^{3 k} \\
\ln \left(\frac{600}{450}\right) \\
3
\end{array}=\frac{3 k}{3} \\
& k=\frac{\ln \left(\frac{600}{450}\right)}{3}=.096
\end{aligned}
$$

Ex. A population of fruit flies is increasing according to an exponential growth model After 0 days, there are 100 flies, and after 4 days there are 300 flies. How

$$
\begin{array}{ll}
t=0 & y=100 \\
t=4 & y=300
\end{array}
$$ many flies will there be after 5 days?

Gaussian Model

$$
y=a e^{-(x-b)^{2} / c}
$$

This is often used in probability and statistics to represent a normally distributed (bell-shaped) model

Logistic Growth Model

This can be used to represent a model with a rapid increase followed by leveling off.

Ex. On a college campus of 5000 students, the spread of a virus is modeled by

$$
y=\frac{5000}{1+4999 e^{-0.8 t}}
$$

where y is the number of students infected after t days.
a) How many students are infected after 5 days?
b) If the college cancels classes when 40% of students are infected, after how many days will classes be cancelled?

