Systems of Equations: Substitution

A system of equations refers to multiple equations involving multiple variables

$$
\left\{\begin{array}{r}
2 x+y=5 \\
3 x-2 y=4
\end{array}\right.
$$

A solution is an ordered pair that satisfies both equations.
$(2,1)$ is the solution to the system

One method for solving a system of equations is substitution

- Solve for a variable in one equation, and then plug into the other equation and solve
- Find the value of the other variable by using one of the original equations

Ex. Solve the system $\left\{\begin{array}{l}x+y=4 \\ x-y=2\end{array}\right.$

Ex. A total of $\$ 12,000$ is invested in two funds paying 5% and 3% simple interest $[I=p r t]$. If the yearly interest is $\$ 500$, how much was invested at each rate?

Ex. Solve the system $\left\{\begin{aligned} x^{2}+4 x-y & =7 \\ 2 x-y & =-1\end{aligned}\right.$

Ex. Solve the system $\left\{\begin{array}{l}-x+y=4 \\ x^{2}+y=3\end{array}\right.$

One solution: graphs intersect once

Two solutions: graphs intersect twice

No solutions: graphs don't intersect

Ex. Solve the system
graphing $\left\{\begin{array}{r}x^{2}-x-y=1 \\ x-y=1\end{array}\right.$ by

Ex. A shoe company invests $\$ 300,000$ in equipment to produce a line of shoes. Each pair costs $\$ 5$ to produce and is sold for $\$ 60$. How many pairs of shoes must be sold before the business breaks even?

Ex. A store sells books and movies. Each book costs $\$ 5$ and each movie costs $\$ 12$. One day, a total of 16 items were sold. If the total amount received was $\$ 150$, how many of each item was sold?

Systems of Equations: Elimination

We are allowed to add the two equations in a system

By manipulating the coefficients, we can eliminate a variable and make the system easier to solve

Ex. Solve the system $\left\{\begin{array}{l}3 x+2 y=4 \\ 5 x-2 y=8\end{array}\right.$

Method of Elimination

- Using multiplication, get the coefficients of a variable to be opposites
- Add the equations to eliminate a variable
- Solve for one variable, then use one of the original equations to find the other variable.

Ex. Solve the system $\left\{\begin{array}{r}2 x-3 y=-7 \\ 3 x+y=-5\end{array}\right.$

Ex. Solve the system $\left\{\begin{array}{l}5 x+3 y=9 \\ 2 x-4 y=14\end{array}\right.$

$$
\text { Ex. Solve the system }\left\{\begin{aligned}
2 x-y & =1 \\
4 x-2 y & =2
\end{aligned}\right.
$$

These graphs coincide

Ex. Solve the system $\left\{\begin{array}{r}x-2 y=3 \\ -2 x+4 y=1\end{array}\right.$

These graphs are parallel

Ex. Solve the system $\left\{\begin{array}{l}0.02 x-0.05 y=-0.38 \\ 0.03 x\end{array}\right.$ $0.03 x+0.04 y=1.04$

