Multivariable Systems
These systems will have three equations and three variables

Ex. Solve the system

2

$$
\begin{gathered}
y+3(2)=15 \\
y+6=15 \\
y=9 \\
(21,9,2)
\end{gathered}
$$

(1)

$$
\begin{gathered}
x-2(9)+3(2)=9 \\
x-18+6=9 \\
x-12=9 \\
x=21
\end{gathered}
$$

When working with systems of equations, we are allowed to perform the following row operations to get an equivalent system:

- Interchange two equations
- Multiply an equation by a nonzero constant
- Add a multiple of one equation to another

The previous example was in row-echelon form (triangular)

- You can use it if you'd like, but it's not necessary
- We'll work with it more in the next chapter

Ex. Solve the system $\{3 x$

$$
(-1,-1)
$$

$$
\begin{aligned}
3(-1)-2 y & =-1 \\
-3-2 y & =-1 \\
-2 y & =2 \\
y & =-1
\end{aligned}
$$

Ex. Solve the system(2) $\left\{\begin{array}{l}x-2 y+3 z=9 \\ -x+3 y=-4 \xrightarrow{x^{2}}-2 x+6 y=-8 \\ 2 x-5 y+5 z=17 \rightarrow 2 x-5 y+5 z=17\end{array}\right.$

$$
\text { (3) } 2 x-5 y+5 z=17 \rightarrow 2 x-5 y+5 z=17
$$

$$
\left.\begin{array}{c}
\begin{array}{c}
\text { (1) +(2) } \\
2+3 z=5 \\
2(2)+(3) \\
y+5 z=9
\end{array} \rightarrow \frac{x-1}{y+3 z=-5} \\
y+5(2)=9 \\
y=-1
\end{array}\right)
$$

(1)

$$
\begin{gathered}
x-2(-1)+3(2)=9 \\
x+2+6=9 \\
x=1
\end{gathered}
$$

$$
(1,-1,2)
$$

(1) $x-3 y+z=1$

Ex. Solve the system ${ }^{(2)} 2 x-y-2 z=2$

$$
\text { (3) } x+2 y-3 z=-1
$$

$$
20+(2): \begin{array}{rr}
2 x-6 y+2 z=2 \\
2 x-y-2 z=2
\end{array} \quad 3\left(\begin{array}{l}
\text { (3) }:
\end{array} \begin{array}{l}
3 x-9 y+3 z=3 \\
\text { (4) } 4 x-7 y=4
\end{array} \quad \text { (5) } \begin{array}{l}
x+2 y-3 z=-1 \\
4 y=2
\end{array}\right.
$$

(4) $4 x-7 y=4 \xrightarrow{x-1}-4 x+7 y=-4$

Ex. Solve the system (3) $\left\{\begin{aligned} x+y-3 z & =-1 \\ y-z & =0 \\ -x+2 y & =1\end{aligned}\right.$
(1) + (3)

$$
3 y-3 z=0 \rightarrow 3 y-3 z=0
$$

$$
\begin{equation*}
y-z=0 \xrightarrow{x^{-3}-3 y+3 z=0}+0=0 \tag{2}
\end{equation*}
$$

true
Many Solutions
Let $y=k$

$$
\longrightarrow \text { (2) } \begin{aligned}
k-z & =0 \\
z & =k
\end{aligned}
$$

(1)

$$
\begin{gathered}
x+k-3 k=-1 \\
x-2 k=-1 \\
x=2 k-1
\end{gathered}
$$

$$
(2 k-1, k, k)
$$

This system has many solutions, and we can describe what the solutions look like

These systems have been square (same number of equations and variables)

- If there are less equations than variables, then there will not be a unique solution
- We can still describe the solutions, as we did in the last example

Ex. Solve the system $\frac{\left\{\begin{array}{l}x-2 y+z=2 \\ 2 x-y-z=1\end{array}\right.}{3 x-3 y=3}$

$$
\text { Let } \begin{aligned}
& x=k \\
& 3 k-3 y=3 \\
&-3 y=-3 k+3 \\
& y=k-1
\end{aligned}
$$

$$
\begin{array}{r}
k-2(k-1)+z=2 \\
k-2 k+2+z=2 \\
-k+2+z=2 \\
z=k
\end{array}
$$

$$
(k, k-1, k)
$$

Ex. Find a quadratic equation $y=a x^{2}+b x+c$ that passes through the points $(-1,3),(1,1)$, and $(2,6)$.

$$
\begin{aligned}
& (-1,3): 3=a(-1)^{2}+b(-1)+c \rightarrow 2 \rightarrow-b+c=3 \rightarrow 2 a-2 b+2 c=6 \\
& (1,1): 1=a(1)^{2}+b(1)+c \longrightarrow a+b+c=1 \\
& (2,6): 6=a(2)^{2}+b(2)+c \longrightarrow 4 a+2 b+c=6 \rightarrow 4 a+2 b+c=6 \\
& x-3 .-6 c=-12
\end{aligned}
$$

(1)+(2):

$$
\begin{aligned}
& 2 a+2 c=4 \xrightarrow{x-3}-6 a-6 c=-12 \\
& 20+(3): 6 a+3 c=12 \underset{\substack{6 a+3(a)=12 \\
6 a=12}}{\longrightarrow} \frac{6 a+3 c=12}{-3 c=0} \begin{aligned}
c=0 \\
\hline 6 a y
\end{aligned} \\
& \text { (2) } 2+b+0=1 \\
& b=-1 \\
& 6 a=12 \\
& a=2 \\
& y=2 x^{2}-x
\end{aligned}
$$

Ex. A total of $\$ 12,000$ is invested in three funds that pay money market (5%), municipal (6%), and mutual (12%). The amount in mutual funds is $\$ 4000$ more than the amount in municipal, ${ }^{z}$ If the total interest is $\$ 1120$, how much was invested in each fund?

$$
\begin{array}{ll}
x=\text { ant. in money market } & .05 x=\text { int. from money market } \\
y=\text { ant. in municipal } & .06 y=\text { int. from municipal } \\
z=\text { ant. in mutual } & .12 z=\text { int. from mutual } \\
x+y+z=12000 \longrightarrow & x+y+z=12000 \\
05 x+.06 y+.12 z=1120 \xrightarrow{x 100} & 5 x+6 y+12 z=112000 \\
z=4000+y & -y+z=4000
\end{array}
$$

©

$$
\begin{aligned}
& 0 x+y+z=12000 \xrightarrow{x-5}-5 x-5 y-5 z=-60000 \\
& \text { (2) } 5 x+6 y+12 z=112000 \longrightarrow 5 x+6 y+12 z=112000
\end{aligned}
$$

(3)

$$
-y+z=4000
$$

$$
\begin{aligned}
& -y+= \\
& -50+20:
\end{aligned}
$$

$$
-50+2): \quad y+7 z=52000
$$

(3) $\frac{-y+z=4000}{8 z=56000} \longrightarrow-y+7000=4000$

$$
z=7000
$$

(1)

$$
\begin{gathered}
x+3000+7000=12000 \\
x+10000=12000 \\
x=\$ 2000
\end{gathered}
$$

