Systems of Inequalities

We are going to sketch inequalities (<, >, \leq, \geq) the same way we did before...with a test point

Ex. Sketch $y \geq x^{2}-1$

$$
\begin{aligned}
y= & x^{2}-1 \\
\text { Test: } & (0,0) \\
& 0 \geq 0^{2}-1 \quad \text { true }
\end{aligned}
$$

Ex. Sketch the graph of $x-y<2$

$$
\begin{aligned}
& \begin{array}{l}
x-y=2 \\
x=0:-y=2 \Rightarrow y=-2 \quad(0,-2), ~
\end{array} \\
& y=0: x=2 \quad(2,0) \\
& \text { Test: }(0,0) \\
& 0-0<2 \\
& \text { true }
\end{aligned}
$$

Ex. Sketch the graph of $y \leq 3$

Ex. Sketch the graph of $x>-2$

The solution of a system of inequalities is a graph of all points that satisfy each inequality

Ex. Sketch the graph, and label the vertices, of the solution set of the system

$$
\left\{\begin{aligned}
& \frac{x-y<2}{x>-2} \\
& \frac{y \leq 3}{2} \begin{array}{c}
x=-2: \\
y=3: \\
y-y=2 \\
y-y=2 \\
x=5
\end{array} \\
& \\
&(-2,3)
\end{aligned}\right.
$$

Ex. Sketch the solution set of the system

$$
\begin{aligned}
& \left\{\begin{array}{l}
\begin{array}{l}
x^{2}-y \leq 1 \\
-x+y \leq 1
\end{array}
\end{array} \begin{array}{rl}
x^{2}-y=1 \\
-y=-x^{2}+1 \\
y=x^{2}-1
\end{array} \quad \begin{array}{c}
0-0 \leq 1 \\
x+y=1
\end{array}\right. \\
& \begin{aligned}
-x+y & =1 \\
y & =x+1 \quad \text { Test: }(0,0) \\
0+0 & <1
\end{aligned} \\
& x=0 \rightarrow y=1 \quad \text { true } \\
& x=1 \rightarrow y=2 \\
& \left\{\begin{array}{l}
y=x^{2}-1 \\
y=x+1
\end{array}\right. \\
& \begin{array}{l}
x^{2}-1=x+1 \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=2 \quad x=-1 \\
y=2+1=3 \quad y=-1+1=0
\end{array}
\end{aligned}
$$

Ex. Sketch the solution set of the system

$$
\left.\begin{array}{l}
\begin{cases}x+y<3 \\
\underline{x+2 y>3}\end{cases} \\
\begin{array}{l}
x+2 y=3 \\
x=0 \rightarrow 2 y=3 \\
y=0 \rightarrow x=3
\end{array} \\
x=\frac{3}{2} \\
x=0 \rightarrow 0, ~\left(0, \frac{3}{2}\right)
\end{array} \quad \begin{array}{l}
\text { Test: }(0,0) \\
0+0<3 \\
\text { true }
\end{array}\right\}
$$

Ex. Sketch the solution set of the system

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{x+y>3}{x+y<-1}
\end{array}\right. \\
& x+y=-1 \\
& x=0 \rightarrow y=-1 \quad(0,-1) \\
& y=0 \quad-x=-1 \quad(-1,0) \\
& \frac{\text { Test }}{0+}(0,0) \\
& 0+0 \\
& \text { fall } \\
& \text { fol }
\end{aligned}
$$

$$
x+y=3
$$

Ex. You plan to invest up to $\$ 20,000$ in two different $x=$ ant. in A accounts, with each account containing at least $\$ 5000$.
$y=$ ant. in B Also, the amount in Account A should have at least twice the amount in Account B. Find and graph a system of inequalities that demonstrates this situation.

$$
\begin{cases}\frac{x+y \leq 20000}{x \geq 5000} & \begin{array}{ll}
x+y=20000 \\
y \geqslant 5000 & \\
\frac{\text { Test }}{0+0}(0,0) \\
x \geqslant 20000
\end{array} \\
\begin{array}{ll}
\text { Test: }(0,10000) & x=2 y \\
0 \geq 2(10000) & y=5000 \rightarrow x=10000 \\
\text { false } & (10000,5000)
\end{array} & y=10000 \rightarrow x=20000 \\
(20000,10000)\end{cases}
$$

Ex. The liquid portion of a diet must provide at least 300 calories, 36
x :\#cups of X units of vitamin A, and 90 units of vitamin C. A cup of drink X has $y=\#$ cuss of $Y 60$ calories, 12 units of vitamin A, and 10 units of vitamin C. A cup of drink Y has 60 calories, 6 units of vitamin A, and 30 units of vitamin C. Set up and graph a system of inequalities that shows how many cups of each drink would meet or exceed the minimum

$$
\begin{aligned}
& \text { requirements. } \\
& \begin{aligned}
60 x+60 y \geqslant 300
\end{aligned} \longrightarrow \begin{array}{c}
60 x+60 y=300 \\
x+y=5
\end{array} \begin{array}{l}
x=0, y=5 \\
y=0, x=5
\end{array} \\
& 12 x+6 y \geq 36 \\
& 10 x+30 y \geq 90 \\
& x \geq 0 \\
& y \geq 0 \\
& 12 x+6 y=36 \text { false } \\
& \begin{array}{lll}
2 x+y=6 & \longrightarrow x=0, y=6 & \\
10 x+30 y=90 & \longrightarrow y=0,2 x=6 \\
x=3 & \text { Test: }(0,0) \\
0+0 \geq 36 \text { false }
\end{array} \\
& \begin{array}{r}
x+3 y=9 \longrightarrow x=0,3 y=9 \\
y=3 \\
y=0, x=9
\end{array}
\end{aligned}
$$

Linear Programming

An optimization problem involves:

- a value to be maximized (or minimized), called the objective function
- restrictions on the variables in the objective function, called the constraints

The constraints are a system of inequalites like we saw earlier, and the solution graph shows all feasible solutions

The maximum and minimum values of the objective function will occur at a vertex of the shaded region

Ex. Find the maximum value of $z=3 x+2 y$ subject to the constraints
$(0,0): z=3(0)+2(0)=0$

$$
\begin{aligned}
& \left\{\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& x+2 y \leq 4 \\
& \frac{x-y}{x-y} \rightarrow x+2 y=4 \\
& x=0 \rightarrow 2 y=4 \\
& y=2
\end{aligned}\right. \\
& (0,2): z=3(0)+2(2)=4 \\
& (1,0): z=3(1)+2(0)=3 \\
& (2,1): z=3(2)+2(1)=8
\end{aligned}
$$

Ex. Find the minimum value of $z=5 x+7 y$ subject to the constraints

$$
\left\{\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& 2 x+3 y \geq 6 \\
& \frac{3 x-y}{} \leq 15 \\
& \frac{-x+y}{2 x+5 y} \leq 4 \\
& \hline
\end{aligned}\right.
$$

$$
\begin{array}{ccc}
2 x+3 y=6 & 3 x-y=15 & \\
x=0 \rightarrow 3 y=6 & y=3 x-15 & y=x+4 \\
y=2 & x=5 \rightarrow y=0 & x=0 \rightarrow y=4 \\
y=0 \rightarrow 2 x=6 & x=6 \rightarrow y=3 & \text { Test: }(0,0) \\
x=3 & \text { Test: } 0,0 & \text { o } 0+0 \\
0-0<15 & 0+0<4 \\
\text { Test: }(0,0) & \text { true } & \text { true }
\end{array}
$$

Ex. A manufacturer is making two types of candy, chocolate creams that net $\$ 1.50$ and chocolate nuts that net $\$ 2.00$, and wants to maximize profit. Market tests and available resources create the following constraints:

- The combined number of boxes should not exceed 1200
- The demand for chocolate nuts is no more than half the demand for chocolate creams
- The number of chocolate cream boxes is no more than 600 plus three times the number of chocolate nuts

Ex. The liquid portion of a diet must provide at least 300 calories, 36
x :\#cups of X units of vitamin A, and 90 units of vitamin C. A cup of drink X has $y=\#$ cups of $Y 60$ calories, 12 units of vitamin A, and 10 units of vitamin C. A cup of drink Y has 60 calories, 6 units of vitamin A, and 30 units of vitamin C. If drink X costs $\$ 0.12$ and drink Y costs $\$ 0.15$, how many cups of each drink must be consumed to obtain optimal cost and still meet the minimum reauiferayn ± 5300

$$
12 x+6 y \geq 36
$$

$$
10 x+30 y \geq 90
$$

$$
x \geq 0
$$

$$
y \geq 0
$$

$$
\begin{aligned}
& x+y=5 \longrightarrow y=0, y=5 \\
& 12 x+6 y=36 \text { false } \\
& 2 x+y=6 \longrightarrow x=0, y=6 \\
& \begin{aligned}
&\left.10 x+30 y=90 \quad \begin{array}{rl}
& =0,-2 x
\end{array}\right)=6 \\
& x=3
\end{aligned} \\
& \begin{array}{r}
x+3 y=9 \longrightarrow x=0,3 y=9 \\
y=3 \\
y=0, x=9
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{cases}x+y=5 & \longrightarrow-x-y=-5 \\
2 x+y=6 & \longrightarrow \\
x=1\end{cases} \\
& \Rightarrow 1+y=5 \\
& y=4
\end{aligned}
$$

$$
\begin{aligned}
& (1,4): C=.12(1)+.15(4)=.72 \\
& E=.12 x+.15 y \\
& (3,2): C=.12(3)+.15(2)=66 \\
& (0,6): C=.12(0)+.15(6)=.9 \\
& (9,0): C=.12(9)+.15(0)=1.08
\end{aligned}
$$

