Inverse Matrices

2 and $1 / 2$ are multiplicative inverses because

$$
2 \times \frac{1}{2}=1
$$

The inverse of matrix A is written A^{-1}, and

$$
A A^{-1}=I \text { and } A^{-1} A=I
$$

where I is the identity matrix
$\underset{\text { are inverses }}{\text { Ex. Show that }} A=\left[\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right]$

$$
A \cdot B=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

If a matrix has an inverse, we say that it is invertible

- Otherwise, we say that it is singular
- Only square matrices can be invertible

One way to find an inverse matrix is by using the row operations

- Create the matrix $[A \mid I]$
- Perform row operations to make the left side into I
- The result will be $\left[I \mid A^{-1}\right]$

Ex. Find the inverse of $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
(1) & -1 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 \\
6 & -2 & -3 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{2}-R_{2}-R_{1}+R_{1}]{\longrightarrow}\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & 4 & -3 & -6 & 0 & 1
\end{array}\right] \xrightarrow[R_{3}-4 R_{3}+R_{3}]{\longrightarrow}\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & -2 & -4 & 1
\end{array}\right]} \\
& \xrightarrow[R_{2} \rightarrow R_{2}+R_{3}]{\longrightarrow}\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -3 & -3 & 1 \\
0 & 0 & 1 & -2 & -4 & 1
\end{array}\right] \xrightarrow{R_{1} \rightarrow R_{1}+R_{2}}\left[\begin{array}{lll|lll}
1 & 0 & 0 & -2 & -3 & 1 \\
0 & 1 & 0 & -3 & -3 & 1 \\
0 & 0 & 1 & -2 & -4 & 1
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{lll}
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2 & -4 & 1
\end{array}\right]
\end{aligned}
$$

For a 2×2 matrix, there's a quicker way

$$
\text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {, then } A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The quantity $a d-b c$ is called the determinant of the matrix...we'll look at that later

Ex. Find the inverse
a. $A=\left[\begin{array}{cc}3 & -1 \\ -2 & 2\end{array}\right]$

$$
\begin{aligned}
A^{-1} & =\frac{1}{6-2}\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 / 2 & 1 / 4 \\
1 / 2 & 3 / 4
\end{array}\right]
\end{aligned}
$$

b. $B=\left[\begin{array}{cc}3 & X_{5}^{-1} \\ -6 & 2\end{array}\right]$

$$
B^{-1}=\frac{1}{6}\left[\begin{array}{ll}
2 & 1 \\
6 & 3
\end{array}\right]
$$

not invertible

To solve the equation $a x=b$, we multiply by the multiplicative inverse $\frac{1}{a}$:

$$
\begin{aligned}
a x & =b \\
\frac{1}{a} a x & =\frac{1}{a} b \\
x & =\frac{b}{a}
\end{aligned}
$$

To solve a matrix equation, we do the same

$$
\begin{aligned}
A X & =B \\
A^{-1} A X & =A^{-1} B \\
X & =A^{-1} B
\end{aligned}
$$

Ex. Solve the system $\left\{\begin{array}{l}3 x+4 y=-2 \\ 5 x+3 y=4\end{array} \Longrightarrow\left[\begin{array}{ll}3 & 4 \\ 5 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 4\end{array}\right]\right.$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 4 \\
5 & 3
\end{array}\right] \\
\left.A^{-1}=\frac{1}{9-20}\left[\begin{array}{cc}
3 & -4 \\
-5 & 3
\end{array}\right]=\frac{1}{-11}\left[\begin{array}{cc}
3 & -4 \\
-5 & 3
\end{array}\right] \quad \begin{array}{cc}
\downarrow & \downarrow \\
A & \begin{array}{l}
1 \\
A X
\end{array} \\
X=A^{-1} B=\frac{1}{-11}
\end{array} \begin{array}{cc}
3 & -4 \\
-5 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\frac{1}{-11}\left[\begin{array}{c}
-22 \\
22
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] \\
x=2 \quad y=-2
\end{gathered} \begin{aligned}
& A^{-1} A X=A^{-1} B \\
& X=A^{-1} B
\end{aligned}
$$

Determinant of a Matrix

The determinant of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
is given by

$$
\operatorname{det} A=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

We can only find the determinant of a square matrix

Ex. Find the determinant
a. $\left|\begin{array}{ll}2 & X_{2}^{-3} \\ 1 & 2\end{array}\right|=4-(-3)=7$
b. $\left|\begin{array}{ll}2 & X^{1} \\ 4^{1} & 2\end{array}\right|=4-4=0$
c. $\left|\begin{array}{ll}0 & x^{3 / 2} \\ 2 & 4\end{array}\right|=0-3=-3$

To find the determinant of a larger matrix, we will use minors and cofactors

The minor of entry $a_{i j}$, written $M_{i j}$, is the determinant of the matrix found by removing row i and column j of matrix A

The cofactor of entry $a_{i j}$, written $C_{i j}$, is

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Ex. Find some minors and cofactors of

$$
\begin{array}{lll}
a_{21}=3 & M_{21}=\left|\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right|=2 & C_{21}=(-1)^{2+1}(2)=-2 \\
a_{23}=2 & M_{23}=\left|\begin{array}{ll}
0 & 2 \\
4 & 0
\end{array}\right|=-8 & c_{23}=(-1)^{2+3}(-8)=8 \\
a_{31}=4 & M_{31}=\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right|=5 & C_{31}=(-1)^{3+1}(5)=5
\end{array}
$$

The determinant of a square matrix is the sum of the entries of any row (or column) multiplied by the corresponding cofactors

Ex. Find the determinant of $A=\left[\begin{array}{ccc}7 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1\end{array}\right]$

a	M	C	$a \cdot C$
$a_{11}=0$	$M_{11}=\left\|\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right\|=-1$	$C_{11}=(-1)^{1+1}(-1)=-1$	$(0)(-1)=0$
$a_{21}=3$	$M_{21}=\left\|\begin{array}{cc}2 & 1 \\ 0 & 1\end{array}\right\|=2$	$C_{21}=(-1)^{2+1}(2)=-2$	$(3)(-2)=-6$
$a_{31}=-4$	$M_{31}=\left\|\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right\|=5$	$C_{31}=(-1)^{3+1}(5)=5$	$(4)(5)=20$
$\operatorname{det} A=14$			

Ex. Find the determinant of $A=\left[\begin{array}{ccc}-2 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 4\end{array}\right]$

a	M	C	$a \cdot C$
$a_{13}=3$	$M_{13}=\left\|\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right\|=1$	$C_{13}=(-1)^{1+3}(1)=1$	$(3)(1)=3$
$a_{23}=0$			
$a_{33}=4$	$M_{33}=\left\|\begin{array}{cc}-2 & 2 \\ 1 & -1\end{array}\right\|=0$	$C_{33}=(-1)^{3+3}(0)=0$	$(4)(0)=0$

$d t A=3$

Ex. Find the determinant of $A=\left[\begin{array}{cccc}-1 & -2 & 0 & - \\ -1 & 1 & 0 & 2 \\ 0 & 2 & 0 & 3 \\ 3 & 4 & 0 & 2\end{array}\right]$

$$
\begin{aligned}
& =3\left[\begin{array}{ccc}
3 & 4 & k
\end{array}\right] \\
& \left.0(-1)^{2+1}\left|\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right|+2(-1)^{2+2}\left|\begin{array}{cc}
-1 & 2 \\
3 & 2
\end{array}\right|+3(-1)^{2+3}\left|\begin{array}{cc}
-1 & 1 \\
3 & 4
\end{array}\right|\right] \\
& =3(0+2(-2-6)-3(-4-3))=3(-16+21)=15
\end{aligned}
$$

Applications of Matrices

It is possible to solve a system of equations by finding a bunch of determinants

Cramer's Rule

Let D be the matrix of coefficents on x and y
To find the first variable (x), create the matrix D_{x} where the first column of D is replaced by the constants of the system

$$
x=\frac{\left|D_{x}\right|}{|D|}
$$

Repeat to find the other variables

Ex. Solve $\left\{\begin{array}{l}4 x-2 y=10 \\ 3 x-5 y=11\end{array}\right.$

The area of a triangle with vertices $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is

$$
A=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

Ex. Find the area of the triangle whose vertices are $(1,0)$, $(2,2)$, and $(4,3)$.

$$
\begin{aligned}
1 & =\frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 1 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{2}\left[0 \cdot 2(-1)^{2+2}\left|\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right|+3(-1)^{3+2}\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|\right] \\
& =\frac{1}{2}[2(1-4)-3(1-2)]=\frac{1}{2}(-6+3)=\frac{-3}{2}
\end{aligned}
$$

Matrices can be used to encode messages:
Each letter is assigned a number

$$
(-=0, A=1, B=2 \text {, etc. })
$$

Group letters into 1×3 matrices
Multiply each matrix by an invertible 3×3 matrix to get a coded matrix

Decode by multiplying by the inverse matrix

Ex. Encode the message MEET ME MONDAY using the matrix $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4\end{array}\right]$

$$
\left[\begin{array}{lll}
13 & 5 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 2 \\
-1 & 1 & 3 \\
1 & -1 & -4
\end{array}\right]=\left[\begin{array}{lll}
13 & -26 & 21
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
13 & -26 & 21
\end{array}\right]
$$

Ex. $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4\end{array}\right]$ was used to create the cryptogram
$\left[\begin{array}{lll}-1 & -7 & 43\end{array}\right]\left[\begin{array}{lll}11 & -24 & 19\end{array}\right]$
Find the originat message.

