
Inverse Matrices

2 and ½ are multiplicative inverses because

The inverse of matrix A is written A-1, and

where I is the identity matrix
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Ex. Show that                       and                   

are inverses
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If a matrix has an inverse, we say that it is 

invertible

• Otherwise, we say that it is singular

• Only square matrices can be invertible



One way to find an inverse matrix is by 

using the row operations

• Create the matrix [ A | I ]

• Perform row operations to make the left 

side into I

• The result will be [ I | A-1]



Ex. Find the inverse of 
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For a          matrix, there's a quicker way

If                     , then 

The quantity ad – bc is called the determinant
of the matrix...we'll look at that later
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Ex. Find the inverse
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To solve the equation ax = b, we multiply 

by the multiplicative inverse   :

To solve a matrix equation, we do the same 
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Ex. Solve the system
3 4 2

5 3 4
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Determinant of a Matrix

The determinant of the matrix

is given by 

We can only find the determinant of a square 
matrix
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Ex. Find the determinant

a.

b.

c.
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To find the determinant of a larger matrix, 

we will use minors and cofactors

The minor of entry a
ij
, written M

ij
, is the 

determinant of the matrix found by 

removing row i and column j of matrix A

The cofactor of entry , written , isija ijC
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Ex. Find some minors and cofactors of 

0 2 1

3 1 2

4 0 1
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The determinant of a square matrix is the 

sum of the entries of any row (or column) 

multiplied by the corresponding cofactors



Ex. Find the determinant of 

0 2 1

3 1 2

4 0 1

A

 
 = −
 
  



Ex. Find the determinant of 

2 2 3

1 1 0

0 1 4
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Ex. Find the determinant of 

1 2 3 0
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0 2 0 3
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Applications of Matrices

It is possible to solve a system of equations 

by finding a bunch of determinants

Cramer's Rule
Let D be the matrix of coefficents on x and y

To find the first variable (x), create the matrix Dx where 

the first column of D is replaced by the constants of the 
system

Repeat to find the other variables
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Ex. Solve 
4 2 10

3 5 11
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The area of a triangle with vertices (x
1
,y

1
), 

(x
2
,y

2
), and (x

3
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) is 
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Ex. Find the area of the triangle whose vertices are (1,0), 
(2,2), and (4,3).



Matrices can be used to encode messages:

Each letter is assigned a number                 
(_ = 0, A = 1, B = 2, etc.)

Group letters into         matrices

Multiply each matrix by an invertible 

matrix to get a coded matrix

Decode by multiplying by the inverse 

matrix
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Ex. Encode the message MEET ME MONDAY using 

the matrix 

1 2 2

1 1 3

1 1 4
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Ex. was used to create the cryptogram

-1  -7  43  11  -24  19

Find the original message.  
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