Series and Sequences

An infinite sequence is an unending list of numbers that follow a pattern. The terms of the sequence are written $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ If the list ends, we call it a finite sequence.

Ex. Write the first four terms of the sequence:
a)

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
a_{n}=3 n-2 \\
a_{1}=3(1)-2=1 \\
a_{2}=3(2)-2=4 \\
a_{3}=3(3)-2=7 \\
a_{4}=3(4)-2=10 \\
\text { b) } a_{n}=3+(-1)^{n}
\end{array} \quad 1,4,7,10, \ldots . . \text { alternates signs } .
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=3+(-1)^{2}=2 \\
& a_{2}=3+(-1)^{2}=4 \\
& a_{3}=3+(-1)^{3}=2 \\
& a_{4}=3+(-1)^{4}=4
\end{aligned}
$$

$$
2,4,2,4, \ldots
$$

Ex. Write the first four terms of the sequence

$$
\begin{aligned}
& a_{n}=\frac{(-1)^{n}}{2 n-1} \rightarrow \text { alternates signs } \\
& a_{1}=\frac{(-1)^{1}}{2(1)-1}=\frac{-1}{1} \\
& a_{2}=\frac{(-1)^{2}}{2(2)-1}=\frac{1}{3} \quad-\frac{1}{1}, \frac{1}{3}, \frac{-1}{5}, \frac{1}{7}, \ldots \\
& a_{3}=\frac{(-1)^{3}}{2(3)-1}=\frac{-1}{5} \\
& a_{4}=\frac{(-1)^{4}}{2(4)-1}=\frac{1}{7}
\end{aligned}
$$

Ex. Write an expression for a_{n} :
a) $1,3,5,7, \ldots$ $a_{n}=2 n-1$
b) $1,-4,9,-16, \ldots$ $a_{n}=(-1)^{n+1} n^{2}$

A sequence is recursive if each term is defined by one or more previous terms

Ex. Find the first five terms of the recursive sequence defined by $a_{1}=3, a_{n+1}=2 a_{n}-5$

$$
n=1: \begin{aligned}
& a_{1}=3 \\
& a_{2}=2 a_{1}-5=2(3)-5=1 \\
& a_{3}=2(1)-5=-3 \\
& a_{4}=2(-3)-5=-11
\end{aligned} \quad a_{5}=2(-11)-5=-27
$$

Ex. The Fibonacci sequence is defined as $a_{0}=1, a_{1}=1, a_{k}=a_{k-1}+a_{k-2}$. Write the first six terms.

$$
1,1,2,3,5,8,13,21,34,55, \ldots
$$

If n is a positive integer, n factorial is defined as

$$
7!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7
$$

$$
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot n
$$

As a special case, $0!=1$.
Keep in mind that parentheses matter:

$$
\begin{aligned}
& 2 n!=2 \cdot n!=2(1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot n)\left(\begin{array}{l}
2 \cdot 5!=2(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5) \\
(2 n)!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 2 n
\end{array}(2 \cdot 5)!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \cdot \cdot \cdot \cdot \cdot \cdot 10\right.
\end{aligned}
$$

Ex. Write the first five terms of the sequence

$$
\begin{aligned}
& a_{n}=\frac{2^{n}}{n!} \\
& a_{1}=\frac{2^{n}}{1!}=\frac{2}{1}=2 \quad 2,2, \frac{4}{3}, \frac{2}{3}, \frac{4}{15}, \ldots \\
& a_{2}=\frac{2^{2}}{2!}=\frac{4}{1 \cdot 2}=2 \\
& a_{3}=\frac{2^{3}}{3!}=\frac{8}{1 \cdot 2 \cdot 3}=\frac{8}{6}=\frac{4}{3} \\
& a_{4}=\frac{2^{4}}{4!}=\frac{x \cdot 2-2 \cdot 2}{1 \cdot x \cdot 3 \cdot 4}=\frac{2}{3} \\
& a_{5}=\frac{2^{5}}{5!}=\frac{x \cdot 2 \cdot 7 \cdot 2 \cdot 2}{1 \cdot x \cdot 3 \cdot 4 \cdot 5}=\frac{4}{15}
\end{aligned}
$$

Ex. Evaluate the factorial
a) $\frac{8!}{2!\cdot 6!}=\frac{1-3 \cdot 4 \cdot 6 \cdot 7 \cdot 8^{4}}{1 \cdot x \cdot 1 \cdot-3-4 \cdot 5 \cdot 6}=28$
b) $\frac{2!6!}{\frac{3!5!}{3}}=2$
c) $\frac{(n+1)!}{(n-1)!}=\frac{1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n \cdot(n+1)}{1 \cdot 2 \cdot 3 \cdot \ldots(n-1)}=n(n+1)$

The Greek letter sigma (Σ) can be used to show the sum of many terms

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

i is called the index of the summation
n is the upper limit of the summation
1 is the lower limit of the summation

Ex. Find the sum
a) $\begin{aligned} \sum_{i=1}^{5} 3 i & =3(1)+3(2)+3(3)+3(4)+3(5) \\ & =3+6+9+12+15=45\end{aligned}$
b) $\begin{aligned} \sum_{k=3}^{6}\left(1+k^{2}\right) & =\left(1+3^{2}\right)+\left(1+4^{2}\right)+\left(1+5^{2}\right)+\left(1+6^{2}\right) \\ & =10+17+26+37=90\end{aligned}$
c) $\sum_{i=0}^{8} \frac{1}{i!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

The sum of all the terms of the infinite sequence is called an infinite series, and is denoted

$$
\sum_{n=1}^{\infty} a_{n}=\underbrace{\underbrace{\underbrace{a_{1}}_{S_{1}}+a_{2}}_{S_{3}}+a_{3}+\ldots+a_{n}}_{S_{n}}+\ldots
$$

Ex. Use the first 3 partial sums to evaluate the sum

$$
\begin{aligned}
& S_{1}=\frac{3}{10^{\prime}}=.3 \\
& S_{2}=\frac{3}{10^{1}}+\frac{3}{10^{2}}=.3+.03=.33 \\
& S_{3}=\frac{3}{10^{1}}+\frac{3}{10^{2}}+\frac{3}{10^{3}}=.3+.03+.003=.333
\end{aligned}
$$

$S_{4}=$

$$
.3333
$$

$$
S_{\infty}=, \overline{3}=\frac{1}{3}
$$

