Arithmetic Sequences and Series

A sequence is arithmetic if we add the same amount each time to get a new term.

This amount, d, is called the common difference

$$
3,7,11,15,19, \ldots \longrightarrow d=4
$$

Ex. Find the first 4 terms of the arithmetic sequence.
a)

$$
\begin{aligned}
& a_{n}=4 n+3 \\
& a_{1}=4(1)+3=7 \\
& a_{2}=4(2)+3=11
\end{aligned}
$$

b)

$$
\begin{aligned}
& a_{n}=7-5 n \\
& a_{1}=7-5(1)=2 \\
& a_{2}=7-5(2)=-3
\end{aligned}
$$

$$
\begin{array}{lc}
d=4 \\
a_{3}=4(3)+3=15 & 7,11,15,19, \ldots \\
a_{4}=4(4)+3=19 & d=-5 \\
a_{3}=7-5(3)=-8 & 2,-3,-8,-13, \ldots \\
a_{4}=7-5(4)=-13 & d=\frac{1}{4} \\
a_{3}=\frac{1}{4}(3+3)=\frac{6}{4} & \frac{4}{4}, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}, \ldots
\end{array}
$$

c)

$$
\begin{aligned}
& a_{n}=\left(\frac{1}{4}\right)(n+3) \\
& a_{1}=\frac{1}{4}(1+3)=\frac{4}{4} \\
& a_{2}=\frac{1}{4}(2+3)=\frac{5}{4}
\end{aligned}
$$

To find the $n^{\text {th }}$ term of an arithmetic sequence, we use the formula

$$
a_{n}=a_{1}+d(n-1)
$$

where a_{1} is the first term and d is the common difference

Ex. Find the $n^{\text {th }}$ term of the arithmetic sequence:(2) $\sum_{i 3}^{5}{\underset{i}{13}}_{8}^{8} \underbrace{11}_{+3}, 14, \ldots$

$$
d=3
$$

$$
a_{n}=2+3(n-1)
$$

Ex. The fourth term of an arithmetic sequence is 20 and the $13^{\text {th }}$ term is 65 . Find the $n^{\text {th }}$
term.

$$
\begin{aligned}
& 20+9 d=65 \\
& a_{n}=5+5(n-1) \\
& 9 d=45 \\
& d=5
\end{aligned}
$$

Ex. Find a_{9} of the arithmetic sequence that starts with $\underbrace{2 \text { and } 9}_{+7}$.

$$
d=7
$$

$$
\begin{aligned}
& a_{n}=2+7(n-1) \\
& a_{9}=2+7(9-1)=58
\end{aligned}
$$

To find the sum of a finite arithmetic sequence with n terms, we use the formula

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Ex. Find the sum of the first 10 odd numbers.

$$
\begin{aligned}
& 1,3,5,7,9,11,13,15,17,19 \\
& S=\frac{10}{2}(1+19)=5(20)=100
\end{aligned}
$$

Ex. Find the $150^{\text {th }}$ partial sum of the arithmetic sequence: $5,16,27,38,49, \ldots$

$$
a_{n}=5+11(n-1)
$$

term $\rightarrow a_{150}=5+11(150-1)=1644$

$$
\text { sum } \rightarrow S=\frac{150}{2}(5+1644)=123675
$$

Ex. Find the sum $\sum_{n=51}^{100} 7 n=\underbrace{7(51)+7(52)+7(53)+\ldots+7(100)}_{+7}$

$$
d=7
$$

$$
S=\frac{50}{2}(7.51+7.100)=26425
$$

Ex. In a golf tournament, 16 golfers win cash prizes. First place gets $\$ 1000$, second place gets $\$ 950$, third place gets $\$ 900$, and so on. What is the total amount of prize money?

$$
\begin{aligned}
a_{n} & =1000-50(n-1) \\
\text { term } \rightarrow a_{16} & =1000-50(16-1)=250 \\
\text { sum } \rightarrow S & =\frac{16}{2}(1000+250)=10,000
\end{aligned}
$$

