The Binomial Theorem

We are going to discuss how to expand something like $(x+y)^{8}$ without a ton of work

First, we need to define the "choose function"

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

We will also write ${ }_{n} C_{r}$ for this function

Ex. Evaluate
a) ${ }_{8} C_{2}=\frac{8!8^{7}}{2!6!}=28$
b) $\binom{10}{3}=\frac{x}{\frac{10!^{8!}}{1 \cdot 2 \cdot 7!}}=\frac{4^{4} \cdot x \cdot 10}{1 \cdot x \cdot 7}=120$
c) ${ }_{7} C_{0}=\frac{7!}{0!7!}=1$
d) $\binom{8}{8}=\frac{8!}{8!0!}=1$

Ex. Evaluate
Ex. Evaluate ${ }_{7}+5 \cdot 6 \cdot 7$
a) $C_{3}=\frac{5 \cdot 6 \cdot 7}{3!x!}=35$
b) $\binom{7}{4}=\frac{7!}{4!3!}=35$
c) ${ }_{12} C_{1}=\frac{12 t^{12}}{1!H^{x}}=12$
d) $\binom{12}{11}=12$

When we expand $(x+y)^{n}$

- There will be $n+1$ terms
- As the powers of x decrease, the powers of y increase
- The powers of x and y will add up to n in each term
- The coefficient of the term with $x^{r i}$ is ${ }_{n} C_{r}$

Consider the expansion

$$
\begin{gathered}
(x+y)^{5}=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5} \\
{ }_{5} C_{\underline{3}}=10
\end{gathered}
$$

An easy way to find these coefficients is Pascal's Triangle

$$
\begin{aligned}
& 1 \text { ROW } 0 \\
& 11 \text { ROW } 1 \\
& 121 \text { ROW } 2 \\
& \begin{array}{llll}
1 & 3 & 3 & \text { ROW } 3
\end{array} \\
& 15101051 \\
& 1615201561 \\
& \begin{array}{llllll|l}
1 & 7 & 21 & 35 & 21 & 7 & \text { ROW } 7
\end{array} \\
& (x+y)^{5}=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
\end{aligned}
$$

Ex. Expand the binomial $(\underline{x}+\underline{1})^{3}$

$$
\frac{1 \cdot x^{3}+3 \cdot x^{2} \cdot 1^{1}+3 \cdot x^{1} \cdot 1^{2}}{x^{3}+3 x^{2}+3 x+1}
$$

Ex. Expand the binomial $(2 x-3)^{4}$

$$
\begin{aligned}
& 1(2 x)^{4}+4(2 x)^{3}(-3)^{1}+6(2 x)^{2}(-3)^{2}+4(2 x)^{1}(-3)^{3}+1(-3)^{4} \\
& 2^{4} x^{4}+4(2)^{3} x^{3}(-3)+6(2)^{2} x^{2}(-3)^{2}+4(2) x(-3)^{3}+(-3)^{4} \\
& 16 x^{4}-96 x^{3}+216 x^{2}-216 x+81
\end{aligned}
$$

Ex. Expand the binomial $\left(x^{2}+4\right)^{3}$

$$
\begin{aligned}
& 1\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(4)^{1}+3\left(x^{2}\right)^{1}(4)^{2}+1 \cdot 4^{3} \\
& x^{6}+12 x^{4}+48 x^{2}+64
\end{aligned}
$$

Ex. Find the coefficient of the term x^{3} in the expansion of $(\underline{x}+2)^{8}$

$$
\begin{aligned}
& \left({ }_{8} C_{3}\right) x^{3}(2)^{5} \\
& \underline{56} x^{3} \underline{(2)^{5}} \\
& 1792 x^{3}
\end{aligned}
$$

Ex. Find the coefficient of the term $x^{6} y^{5}$ in the expansion of $(3 x-2 y)^{11}$

$$
\begin{aligned}
& \left({ }_{11} C_{6}\right)(3 x)^{6}(-2 y)^{5} \\
& (462) 3^{6} x^{6} \frac{(-2)^{5} y^{5}}{} \\
& -10777536 x^{6} y^{5}
\end{aligned}
$$

