## Counting Principles

Ex. Eight pieces of paper are numbered 1 to 8 and placed in a box. One piece of paper is drawn from the box, its number is written down, and the piece of paper is replaced in the box. A second piece of paper is drawn from the box, and its number is written down. How many different ways can a sum of 12 be obtained?


Ex. Eight pieces of paper are numbered 1 to 8 and placed in a box. One piece of paper is drawn from the box, its number is written down, and the piece of paper is NOT replaced in the box. A second piece of paper is drawn from the box, and its number is written down. How many different ways can a sum of 12 be obtained?


Ex. How many different phone numbers are there in one area code? [Keep in mind that numbers can't start with 0 or 1.]

$$
\begin{gathered}
\overline{8} \overline{10} \overline{10} \overline{10} \overline{10} \overline{10} \overline{10} \\
8,000,000
\end{gathered}
$$

A permutation is the rearrangement of elements.

Ex. How many permutation are there of the letters A, B, C, D, E, and F?

$$
\begin{gathered}
\overline{6} \overline{5} \frac{3}{3} \overline{2} \overline{1} \\
6!
\end{gathered}
$$

The number of permutations of $n$ elements is $n!$

Ex. How many distinguishable ways can the letters in BANANA be written?

$$
\begin{array}{ll}
\frac{6!}{2!3!} & N \text { repeats } 2 \text { times } \\
& A \text { repeats } 3 \text { times }
\end{array}
$$

Ex. Eight horses are running in a race. How many different ways are there for the horses to take $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ place?

$$
\begin{array}{r}
\overline{8}-\frac{7}{6} \\
8 \cdot 7 \cdot 6=\frac{8!}{5!}
\end{array}
$$

The number of permutations of $n$ elements taken $r$ at a time is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

## In the last example,

$$
{ }_{8} P_{3}=\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=8 \cdot 7 \cdot 6
$$

A combination is a list of elements where order is not important.

$$
\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \text { and }\{\mathrm{B}, \mathrm{C}, \mathrm{~A}\}
$$

are different permutations (where order matters) but the same combination (where order doesn't matter)

The number of combinations, of $n$ elements taken $r$ at a time is ${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$
Order doesn't matter Order matters

## Permutations

$$
\text { Take } 3 \text { horses }
$$

$$
\text { out of } 8
$$

Secretariat, Seabiscuit, Maximus
Seabiscuit, Maximus, Secretariat

$$
{ }_{8} \mathrm{C}_{3}=\frac{8!}{3!5!}
$$

Secretariat, Seabiscuit, Maximus
Seabiscuit, Maximus, Secretariat

$$
{ }_{8} \mathrm{P}_{3}=\frac{8!}{5!}
$$

Ex. A standard poker hand consists of five cards dealt from a deck of 52. How many different poker hands are possible?

$$
{ }_{52} C_{5}=\frac{52!}{5!47!}=2,598,960
$$

Ex. On a 15 -member baseball team, a batting order of 9 players needs to be created. How many different batting orders are possible?

$$
{ }_{15} P_{q}=1,816,214,400
$$

## Probability

A sample space is a list of possible outcomes
Ex. Find the sample space if
a) one coin is tossed $\{H, T\}$
b) two coins are tossed $\{H H, H T, T T, T H\}$

The probability of an event is

$$
P(\text { event })=\frac{\text { number favorable }}{\text { number possible }}
$$

Probabilities are always between 0 (impossible) and 1 (certain)

Ex. Two coins are tossed. What is the probability of both landing on heads?
$\frac{\# \text { favorable }}{\# \text { possible }}=\frac{1}{4}$

Ex. A card is drawn from a deck, what is the probability that it is an ace?

$$
\frac{\# \text { favorable }}{\# \text { possible }}=\frac{4}{52}=\frac{1}{13}
$$



## 52 Cards

Face Cards



$\bullet$| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $J$ | $Q$ | $K$ | $A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




Ex. What is the probability of winning a lottery where a player chooses six numbers (in any order) between 1 and 41?

$$
\begin{aligned}
\frac{\text { \# favorable }}{\# \text { possible }}=\frac{1}{{ }_{41} C_{6}} & =\frac{1}{4,496,388} \\
& =.00000022
\end{aligned}
$$

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Ex. When drawing a card from a standard deck, what is the probability that the card is a heart or a face card?

$$
\begin{aligned}
& \text { a heart or a face card? } \\
& \frac{\# \text { favorable }}{\# \text { possible }}=\frac{13+i 2-3}{52}=\frac{22}{52}=\frac{11}{26}
\end{aligned}
$$



Two events are independent if their occurrences don't affect each other

If $A$ and $B$ are independent, then

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

Ex. A random number generator selects three integers from 1 to 20 . What is the probability that all three numbers are less than or equal to 5 ?

$$
\begin{aligned}
& \text { numbers are less than or equal to 5? } \\
& \# \text { favorable } \\
& \# \frac{5}{20} \cdot \frac{5}{20} \cdot \frac{5}{20}=\left(\frac{1}{4}\right)^{3}=\frac{1}{64}
\end{aligned}
$$

