First part is out of 40 pts. Second part is out of 65 pts . Total points possible is 105 pts .
\rightarrow Grade is out of 100 pts.

$500 \cdot($ desired $\%)=$ total points needed

Total points needed

- 3 undropped exams
- Percent in quiz category

Points needed on final (out of 100)

Chapter 1

- Graphing Equations
- x - and y-intercepts

- Solving Linear Equations

Ex. Solve $\frac{x}{3}+\frac{3 x}{4}=2$

$$
\begin{gathered}
4 \cdot \frac{x}{3}+12 \cdot \frac{3 x}{4}=12 \cdot 2 \\
4 x+9 x=24 \\
13 x=24 \\
x=\frac{24}{13}
\end{gathered}
$$

- Word problems with one variable equations

Ex. You have a job for which your annual salary will be $\$ 32,300$. This includes a year-end bonus of $\$ 500$. You will be paid twice a month. What is your pay (before taxes) for each paycheck?
$x=$ amount of each paycheck

$$
\begin{gathered}
24 x+500=32300 \\
24 x=31800 \\
x=1325
\end{gathered}
$$

$$
\begin{aligned}
& \text { - Solving quadratic equations } \longrightarrow \text { factoring } \\
& \text { - Using complex numbers } \\
& \begin{aligned}
\text { Ex. Simplify } \left.\frac{2+3 i(4+2}{(4-2 i)(4+2} i\right) & =\frac{8+4 i+12 i+6\left(i^{2}\right)}{16+\frac{8 i-8 i-4\left(i^{2}\right)}{(-1}} \\
i^{2}=-1 & \frac{2+16 i}{20} \\
& =\frac{2}{20}+\frac{16}{20} i \\
& =\frac{1}{10}+\frac{4}{5} i
\end{aligned}
\end{aligned}
$$

$\frac{\text { check }}{\text { div. by } x}$
log. in orig. eq u.
in crit. eq.

$(x+2)^{2}$	$=(\underbrace{x+2)(x+2)}$
	$=x^{2}+2 x+2 x+4$
	$=x^{2}+4 x+4$

- Inequalities of one variable Ex. Solve and graph $|x+3| \geq 7 \quad(-\infty,-10] \cup[4, \infty)$ $|x+3|=7$

$$
\begin{array}{ll}
x+3=7 \\
x=4 & x+3=-7 \\
x=-10
\end{array}
$$

Ex. Solve $\frac{2 x-7}{x-5} \leq 3$

$$
\begin{gathered}
\frac{2 x-7}{x-5}=\frac{3}{1} \\
3(x-5)=2 x-7 \\
3 x-15=2 x-7 \\
x-15=-7 \\
x=8
\end{gathered}
$$

undefined: $\quad x-5=0$

$$
x=5
$$

Chapter 2

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Graph and equation of a line

Ex. Find equation of the line that passes through $(2,-1)$ and is perpendicular to the line $2 \not x-3 y=5$
my slope $=\frac{-3}{2}$
my point $=(2,-1)$

$$
\begin{aligned}
\frac{-3 y}{-3} & =\frac{-2 x}{-3}+\frac{5}{-3} \\
y & \left.=\frac{2}{3}\right) x-\frac{5}{3}
\end{aligned}
$$

- Functions
- x 's can't repeat (vertical line test of the graph)
- function notation $f(x)$
- domain and range

- Zeroes of a function \rightarrow What x 's make $f(x)=0$?

Ex. Find the zeroes of the function $h(t)=\frac{2 t-3}{t+5}=\frac{0}{1}$

$$
\begin{gathered}
2 t-3=0 \\
2 t=3 \\
t=\frac{3}{2}
\end{gathered}
$$

- Average rate of change of a function

Ex. Find the average rate of change of $f(x)=x^{3}-3 x$ from $x_{1}=-2$ to $x_{2}=0$.

$$
\begin{array}{ll}
f(-2)=(-2)^{3}-3(-2)=8+6=-2 & (-2,-2) \\
f(0)=0^{3}-3(0)=0 & (0,0)
\end{array}
$$

$$
\text { ave. rate }=\frac{-2-0}{-2-0}=1
$$

- Using parent functions

$$
y=2^{x}
$$

- Know the basic power, exponential, reciprocal, logarithmic functions

$$
y=\ln x
$$

Vertical and Horizontal Shifts
Let c be a positive real number. Vertical and horizontal shifts in the graph of $y=f(x)$ are represented as follows.

1. Vertical shift c units upward:
2. Vertical shift c units downward:
3. Horizontal shift c units to the right:

$$
\left.\begin{array}{l}
h(x)=f(x)+c \\
h(x)=f(x)-c \\
h(x)=f(x-c) \\
h(x)=f(x+c)
\end{array}\right\} \text { outside inside } \Rightarrow \text { vertical } \Rightarrow \text { horiz. }
$$

Reflections in the Coordinate Axes
Reflections in the coordinate axes of the graph of $y=f(x)$ are represented as follows.

1. Reflection in the x-axis:
2. Reflection in the y-axis:

$$
\begin{aligned}
& \text { of the graph of } y=f(x) \text { are represented } \\
& h(x)=-f(x) \longrightarrow \text { vert. flip } \\
& h(x)=f(-x)
\end{aligned} \longrightarrow \text { horit. flip }
$$

Ex. Given the graph of $y=x^{4}$ below, identify the equation of the second graph.

$y=-x^{4}$

$y=x^{4}$

$$
y=-x^{4}+2
$$

- Composite functions

$$
(f \circ g)(x) \text { means } f(g(x))
$$

Ex. Given $f(x)=x+2$ and $g(x)=4-x^{2}$ find $(f \circ g)(x)$

$$
\begin{aligned}
& =f(g(x)) \\
& =f\left(4-x^{2}\right) \\
& =\left(4-x^{2}\right)+2 \\
& =6-x^{2}
\end{aligned}
$$

- Inverse functions
- To find the equation for f^{-1}, switch the roles of x and y and then solve for y.
- To find the graph of f^{-1}, reflect the graph of f over the line $y=x$.
Ex. Given the graph of $f(x)$ below, sketch f^{-1}.

- A function is invertible if no y 's repeat (graph passes the horizontal line test)

Ex. Are these functions invertible?
a)

Even if the function is invertible, you still may not be able to find an equation.

Chapter 3

- Quadratic functions

$$
f(x)=a x^{2}+b x+c
$$

Parabolas are symmetric with respect to a vertical line, called the axis of symmetry

This line has the equation

$$
x=-\frac{b}{2 a}
$$

The turning point of a parabola is called the vertex.
Notice that the x-coordinate of the vertex is also $x=-\frac{b}{2 a}$
If the lead coefficient, a, is positive, the parabola opens upward.

The standard form of a quadratic function is

$$
f(x)=a(x-h)^{2}+k
$$

The vertex of the parabola is the point (h, k).
If $a>0$, the parabola opens upward.
If $a<0$, the parabola opens downward.

Ex. Write the equation of the parabola whose vertex is $(1,2)$ and that contains the point $(0,0)$.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x-1)^{2}+2 \\
& 0=a(0-1)^{2}+2 \\
& 0=a(-1)^{2}+2 \\
& 0=a+2 \\
& a=-2
\end{aligned}
$$

- End behavior of a polynomial
- What happens off to the left (as $x \rightarrow-\infty$) and to the right (as $x \rightarrow \infty$)
- Intermediate Value Theorem

Ex. Use the Intermediate Value Theorem to show that $f(x)=x^{3}-x^{2}+1$ has a zero on the interval $[-2,0]$.

$$
\begin{aligned}
& f(-2)=(-2)^{3}-(-2)^{2}+1=-8-4+1=-11<0 \\
& f(c)=0^{3}-0^{2}+1=1>0
\end{aligned}
$$

- Polynomial division (or synthetic division)

Ex. Divide $x^{4}-10 x^{2}-2 x+4$ by $x+3$

$$
\begin{aligned}
& x + 3 \longdiv { x ^ { 3 } - 3 x ^ { 2 } - x + 1 + \frac { 1 } { x + 3 } } \\
& \frac{-x^{4}+3 x^{3}}{-3 x^{3}-10 x^{2}} \\
& \begin{array}{l}
\underset{x+3}{\text { factor }} \begin{array}{r}
\text { root } \\
x=-3
\end{array} \\
\begin{array}{r}
\frac{+3 x^{3}+9 x^{2}}{-x^{2}-2 x} \\
\frac{1-3 x+4}{2}
\end{array}
\end{array} \\
& -3 \left\lvert\, \begin{array}{ccccc}
1 & 0 & -10 & -2 & 4 \\
& -3 & 9 & 3 & -3 \\
\hline & -3 & -1 & 1 & 1 \\
p & p & p & p & \\
x^{3} & x^{2} & x & \text { cost }
\end{array}\right. \\
& x^{3}-3 x^{2}-x+1+\frac{1}{x+3}
\end{aligned}
$$

Ex. Find the rational zeroes of $f(x)=\left(x^{4}-x^{3}+x^{2}-3 x-6 \rightarrow 1,2,3,6\right.$ then factor.

$$
\begin{aligned}
& f(1)=1-1+1-3-6=x 8 \\
& f(-1)=1+1+1+3-6=0 \leqslant x=-1 \text { is zero } \\
& f(2)=16-8+4-6-6=0 \\
& \begin{array}{c}
p=2 \\
\text { zero } 9
\end{array} \quad 2 \left\lvert\, \begin{array}{rrrr}
\begin{array}{rrrr}
1 & 1 & -3 & -6 \\
-1 & 2 & -3 & 6 \\
-2 & 3 & -6 \\
2 & 0 & 6
\end{array} & f(x)=(x+1)\left(x^{3}-2 x^{2}+3 x-6\right) \\
\frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{6}{1}, \frac{-2}{1}, \frac{-6}{1}
\end{array}\right. \\
& f(x)=(x+1)(x-2)\left(x^{2}+3\right)
\end{aligned}
$$

Ex. Find a fourth-degree polynomial that has $1,-1$, and $3 i$ as zeroes.

$$
\begin{aligned}
& f(x)=(x-1)(x+1)\left(x^{2}-3 i\right)(x+3 i) \\
& f(x)=\left(x^{2}-1\right)\left(x^{2}+9\right) \\
& f(x)=x^{4}+8 x^{2}-9
\end{aligned}
$$

y is directly proportional (varies directly) to x if $y=k x$ for some constant k
y is directly proportional to the $n^{\text {th }}$ power to x if $y=k x^{n}$ for some constant k
y is inversely proportional (varies inversely) to x if $y=\frac{k}{x}$ for some constant k
z is jointly proportional (varies jointly) to x and y if $z=k x y$ for some constant k

Ex. The state income tax is directly proportional to gross income. If the tax is $\$ 46.05$ for an income of $\$ 1500$, write a mathematical model for income tax.

Chapter 4

- Rational Functions
- Vertical asymptotes (when we divide by 0 , maybe)
- Horizontal asymptotes (value as graph goes left or right) - look at lead terms on top and bottom
- If degree on top is one more than degree on the bottom, look for a slant asymptote (divide)

Ex. Graph $f(x)=\frac{x}{x^{2}-x-2}=\frac{x}{(x-2)(x+1)}$

1) $p_{\text {lug in }} 0: f(0)=\frac{0}{0^{2}-0-2}=0 \leftarrow y$-int.
2) Factor
3) Set top $=0: x=0 \leftarrow x$-int.
4) Set bottom $=0:(x-2)(x+1)=0$

$$
x=2 \quad x=-1
$$

5) As $x \rightarrow \infty, f \rightarrow \frac{x}{x^{2}}=\frac{1}{x} \rightarrow 0 \quad y=0$
6) Plog in $\frac{4}{10}=\frac{m^{\text {ore }}}{5}$ if needed

$$
\begin{aligned}
& p \operatorname{lng}=\operatorname{lig} \frac{40 r e}{\text { more }} \\
& f(4)=\frac{40}{10}=\frac{1}{5} \\
& f(1)=\frac{-2}{-2} \\
& f(-3)=\frac{-3}{10}
\end{aligned}
$$

- Conics (circles, parabolas, ellipses, hyperbolas)

A parabola with vertex $(0,0)$ and directrix $y=-p$
has the equation $x^{2}=4 p y$
variable that's not squared
is direction parabola opens

A parabola with vertex $(0,0)$ and directrix $x=-p$
has the equation $y^{2}=4 p x$

An ellipse centered at $(0,0)$ with horizontal axis length $2 a$ and vertical axis length $2 b$ has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The vertices and foci lie on the major (longer) axis. The foci lie c units from the center, where $c^{2}=a^{2}-b^{2}$.

positive term is direction hyper bola opens
A hyperbola centered at $(0,0)$ with a horizontal transverse axis has equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

A hyperbola centered at $(0,0)$ with a vertical transverse axis has equation

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1
$$

The foci lie c units from the center, where $c^{2}=a^{2}+b^{2}$.

Ex. Sketch a graph of the hyperbola $\longrightarrow c^{2}=a^{2}+b^{2}$ $\frac{4 x^{2}}{16}-\frac{y^{2}}{16}=\frac{16}{16}$, and identify the foci.

Parabola: Vertex $=(h, k)$

Ellipse: Center $=(h, k)$

Hyperbola: Center $=(h, k)$

Ex. Sketch $x^{2}+4 y^{2}+6 x-8 y+9=0$
ellipse

$$
\begin{aligned}
& x^{2}+6 x+4 y^{2}-8 y=-9 \\
& \left(x^{2}+6 x+9\right)+4\left(y^{2}-2 y+1\right)=-9+9+4 \\
& \frac{(x+3)^{2}}{4}+\frac{4(y-1)^{2}}{4}=\frac{4}{4} \\
& \frac{(x+3)^{2}}{4}+\frac{(y-1)^{2}}{7^{1}}=1 \\
& \quad b=2 \\
& \quad \text { center: }(-3,1)
\end{aligned}
$$

Chapter 5

- Exponential Functions

Ex. Sketch the graph of $f(x)=1-3^{x}=-3^{x}+1$

$y=3^{x}$

Ex. Solve for x.

$$
\begin{gathered}
9^{x}=3^{x+1} \\
\left(3^{2}\right)^{x}=3^{x+1} \\
3^{2 x}=3^{x+1} \\
2 x=x+1 \\
x=1
\end{gathered}
$$

When interest is compounded n times per year, we used the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad \begin{aligned}
& A=\text { amount in bank } \\
& P=\text { principalinvested } \\
& r=\text { interest rate } \\
& t=\text { time (in years) }
\end{aligned}
$$

If interest is compounded continually, we use the formula

$$
A=P e^{r t}
$$

- Logarithmic functions

$$
\begin{aligned}
& y_{r}=\log x \rightarrow x=a^{y} \\
& a^{y}=x
\end{aligned}
$$

Ex. Evaluate by hand.
a) $\operatorname{la}_{2} 2=x \rightarrow 32: 2^{x} \rightarrow x=5$
b) $\log _{3} 1=0$
c) $\log 0=x \rightarrow 3=9^{x} \rightarrow x=\frac{1}{2}$

The logarithmic function with base 10 is called the common logarithm is can be written $f(x)=\log x$

The function $f(x)=\log _{e} x$ is called the natural logarithm function, and it is often written $f(x)=\ln x$

Properties of Logarithms

$a^{0}=1 \quad \leftrightarrow \quad \log _{a} 1=0$
$a^{1}=a \quad \leftrightarrow \quad \log _{a} a=1$
Since exponents and logarithms are inverse, $a^{\log _{a} x}=x$ and $\log _{a} a^{x}=x$

Since logarithms are one-to-one, we know:

$$
\text { If } \log _{a} x=\log _{a} y \text {, then } x=y \text {. }
$$

Ex. Evaluate $\log _{4} 25=\frac{\ln 25}{\ln 4}=2.3$

Properties of Logarithms

$\log (A B)=\log A+\log B \rightarrow$ mut. inside \Rightarrow add logs
$\log \left(\frac{A}{B}\right)=\log A-\log B \rightarrow$ div. inside \Rightarrow subtr. logs.
$\log \left(A^{n}\right)=n \log A \longrightarrow$ exp. inside \Rightarrow coeff. outside

These apply to all logarithms, not just the common log

Ex. Find the exact value without a calculator
a) $\log _{5} \sqrt[3]{5}=\log _{5}\left(s^{1 / 3}\right)=\frac{1}{3}$

- Exponential and Logarithmic Equations $\begin{aligned} & \text { Ex. } \ln x-\ln \not \ln _{3}=0 \\ &+\ln 3\end{aligned} \rightarrow \frac{\ln x=\ln 3}{x=3}$

Ex. $\log _{(0)} x=-1 \Rightarrow x=10^{-1}$

Ex. $e^{x^{2}}=e^{-3 x+4} \Rightarrow x^{2}=-3 x+4$

Ex. $2\left(3^{2 x-5}\right)-4=11$

$$
\frac{q}{}\left(3^{2 x-5}\right)=\frac{15}{2}
$$

$$
\ln \left(3^{2 x-5}\right)=\ln \left(\frac{15}{2}\right)
$$

$$
\begin{aligned}
& (2 x-5) \ln 3=\ln \frac{15}{2} \\
& 2 x-5=\frac{\ln \left(\frac{\sqrt{2}}{2}\right)}{\ell 3} \\
& 2 x=\frac{\ln \left(\frac{5}{2}\right)^{3}}{\ln 3}+5 \\
& x=\frac{\ln \left(\frac{15}{2}\right)}{\ln 3}+5 \\
& 2
\end{aligned}
$$

Ex. $5 e^{2 x}=e^{x-3}$

Ex. $\log _{3}(5 x-1)=\log _{3}(x+7)$

$$
\begin{gathered}
5 x-1=x+7 \\
4 x-1=7 \\
4 x=8 \\
x=2
\end{gathered}
$$

Ex. $\log _{6}(3 x+14)-\log _{6} 5=\log _{6} 2 x$

$$
\begin{aligned}
\log _{6}\left(\frac{3 x+14}{5}\right) & =\log _{6} 2 x \\
\frac{3 x+14}{5} & =2 x
\end{aligned}
$$

- Exponential Models

Ex. The number N of bacteria in a culture is modeled by $N=450 e^{k t}$, where t is time in hours. If $N=600$ when $t=3$, estimate the time required for the population to

$$
\begin{aligned}
600 & =450 e^{k(3)} \\
\ln \left(\frac{600}{450}\right) & =\ln \left(e^{3 k}\right) \\
\ln \left(\frac{600}{450}\right) & =3 k \\
k & =\frac{\ln \left(\frac{600}{150}\right)}{3}=.096
\end{aligned}
$$

$$
\begin{aligned}
N & =450 e^{.096 t} \\
N & =450 e^{.096(s)} \\
& =726.85
\end{aligned}
$$

Chapter 6

- Solving systems of equations
- Substitution
- Elimination
- Augmented matrix
- No solutions (all variables drop out and you're left with a false statement)
- Many solutions (all variables drop out and you're left with a true statement)

Ex. Solve the system

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=4 \\
x-y=2
\end{array}\right. \\
& \begin{array}{l}
2 x=6 \\
x=3
\end{array} \\
& \begin{array}{r}
x=3 \\
3+y=4 \\
y=1
\end{array} \\
& \begin{array}{l}
x, 1)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
x-4=-x^{2}-2 \\
+x^{2}+2 \quad+x^{2}+2 \\
x^{2}+x-2=0 \\
(x+2)(x-1)=0 \\
x=-2 \quad x=1 \\
y=-2-4 \quad y=1-4 \\
=-6 \quad=3 \\
(-2,-6) \quad(1,-3)
\end{gathered}
$$

Ex. Solve the system

$$
\left\{\begin{aligned}
& 5 x+3 y=9 \xrightarrow{x^{4}} 20 x+12 y=36 \\
& 2 x-4 y=14 \xrightarrow{x^{3}} \begin{array}{rl}
6 x-12 y=42
\end{array} \\
& 26 x=78 \\
& x=3
\end{aligned}\right\} \begin{aligned}
2(3)-4 y & =14 \\
6-4 y & =14 \\
-4 y & =8 \\
y & =-2
\end{aligned}
$$

Ex. Solve the system $\left\{\begin{array}{c}x-3 y+z=1 \\ 2 x-y-2 z=2 \\ x+2 y-3 z=-1\end{array} \Rightarrow\left[\begin{array}{ccc|c}1 & -3 & 1 & 1 \\ 2 & -1 & -2 & 2 \\ 1 & 2 & -3 & -1\end{array}\right]\right.$

Ex. Find a quadratic equation $y=a x^{2}+b x+c$ that passes through the points $(-1,3),(1,1)$, and $(2,6)$.

$$
\begin{array}{ll}
(-1,3): & 3=a(-1)^{2}+b(-1)+c \longrightarrow 3=a-b+c \\
(1,1): & 1=a(1)^{2}+b(1)+c \longrightarrow 1=a+b+c \\
(2,6): 6=a(2)^{2}+b(2)+c \longrightarrow 6=4 a+2 b+c
\end{array}
$$

Chapter 7

- Using matrices to solve systems of equations
- Adding, subtracting, multiplying matrices
- Finding inverse matrix (shortcut for 2×2)
- Determinant of a matrix

Chapter 8

- Sequences and series
- Arithmetic sequences/series
- Geometric sequences/series
- Binomial Theorem (including ${ }_{n} C_{r}$)
- Counting Principal $\left({ }_{n} P_{r}\right)$
- Probability

If you would like your final exam mailed to you, please bring a self addressed, stamped envelope (with 3 stamps) with you to the final.

