First part is out of 40 pts.
Second part is out of 65 pts.
Total points possible is 105 pts.
→ Grade is out of 100 pts.

$500 \cdot (\text{desired \%}) = \text{total points needed}$

Total points needed

- 3 undropped exams
- Percent in quiz category
- Points needed on final (out of 100)

- Graphing Equations
- x- and y-intercepts $\downarrow \qquad \downarrow$ $y=0 \qquad \chi=0$

• Solving Linear Equations

Ex. Solve
$$\frac{x}{3} + \frac{3x}{4} = 2$$

$$\frac{4}{12} \cdot \frac{x}{3} + \frac{3}{12} \cdot \frac{3x}{4} = 12 \cdot 2$$

$$\frac{4}{13} \cdot \frac{3x}{3} = 12 \cdot 2$$

$$\frac{4}{13} \times \frac{7}{13} = 24$$

$$\frac{13x}{x} = 24$$

Word problems with one variable equations
 <u>Ex.</u> You have a job for which your annual salary will be \$32,300. This includes a year-end bonus of \$500. You will be paid twice a month. What is your pay (before taxes) for each paycheck?

2300

$$x = amount of each paycheck 24x + 500 = 3724x = 31800x = 1325$$

 Solving quadratic equations
 factoring guad. formula Using complex numbers 8+4/1+121+6/i 16+81-81-4/12 2 + 3i(4 + 2i)Ex. Simplify $\frac{2+161}{20}$ $\frac{2}{20} + \frac{10}{20}$ $\frac{1}{10} + \frac{4}{5}$

• Solving other types of equations Ex. Solve $\sqrt{2x+7} - x = 2$ 1× 1× $\sqrt{2x+7}^{2} = (x+2)^{2}$ $\sqrt{2(-3)} + 7 - (-3) = 2 \qquad \forall c \land 1 - (\land 1 - (\land 1 - L)) = 2 \qquad 2 \chi + 7 = \chi^{2} + 4 \chi + 4 \qquad -2 \chi - 7 \qquad -2 \chi - 7$ (1+3=2) $0 = x^{2} + 2x - 3$ 0 = (x+3)(x-1) = 0X-1=0 X73=0 $\sqrt{2+7} - 1 = 2$ $\sqrt{9} - 1 = 2$

check dis. by x log in orig equ. in orig. equ. $(\chi + 2)^2 = (\chi + 2)$ (x+2) = x² +2x+2x -4 = x + 4 x + 4

$$\gamma - \gamma_1 = m(x - x_1)$$

• Graph and equation of a line

Ex. Find equation of the line that passes through (2,-1) and is perpendicular to the line 2f - 3y = 5-7x -2x-7x -7x -2x-7x -2x -7x -7

- Functions
 - *x*'s can't repeat (vertical line test of the graph)
 - function notation f(x)

• Zeroes of a function \longrightarrow what \dot{x} 's make f(x)=0? <u>Ex.</u> Find the zeroes of the function $h(t) = \frac{2t-3}{t+5} = 0$

$$2t-3 = 0$$

 $2t = 3$
 $t = \frac{3}{2}$

• Average rate of change of a function

<u>Ex.</u> Find the average rate of change of $f(x) = x^3 - 3x$ from $x_1 = -2$ to $x_2 = 0$.

$$f(-2) = (-2)^{3} - 3(-2) = 8 + 6 = -2 \qquad (-2, -2)$$

$$f(0) = 0^{3} - 3(0) = 0 \qquad (0, 0)$$

$$ave. rate = \frac{-2 - 0}{-2 - 0} = 1$$

- Using parent functions
 - Know the basic power, exponential, reciprocal, logarithmic functions

Vertical and Horizontal Shifts

Let *c* be a positive real number. Vertical and horizontal shifts in the graph of y = f(x) are represented as follows.

- 1. Vertical shift c units upward:
- 2. Vertical shift c units downward:
- 3. Horizontal shift *c* units to the *right*:

4. Horizontal shift *c* units to the *left*:

 $h(x) = f(x) + c \qquad \text{outside} \implies \text{vertical}$ $h(x) = f(x) - c \qquad \text{inside} \implies \text{vertical}$ $h(x) = f(x - c) \qquad \text{inside} \implies \text{horiz}.$

Reflections in the Coordinate Axes

Reflections in the coordinate axes of the graph of y = f(x) are represented as follows.

1. Reflection in the x-axis:

2. Reflection in the y-axis:

 $h(x) = -f(x) \longrightarrow \text{vert. flip}$ $h(x) = f(-x) \longrightarrow \text{horiz. flip}$

Ex. Given the graph of $y = x^4$ below, identify the equation of the second graph.

- Inverse functions
 - To find the equation for f^{-1} , switch the roles of *x* and *y* and then solve for *y*.
 - To find the graph of f^{-1} , reflect the graph of f over the line y = x.
- <u>Ex.</u> Given the graph of f(x) below, sketch f^{-1} .

• A function is invertible if no y's repeat (graph passes the horizontal line test)

Ex. Are these functions invertible?

Even if the function is invertible, you still may not be able to find an equation.

• Quadratic functions

$$f(x) = ax^2 + bx + c$$

Parabolas are symmetric with respect to a vertical line, called the <u>axis of</u> <u>symmetry</u>

This line has the equation $x = -\frac{b}{2a}$

The turning point of a parabola is called the <u>vertex</u>. Notice that the *x*-coordinate of the vertex is also $x = -\frac{b}{2a}$ If the lead coefficient, *a*, is positive, the parabola opens upward. The standard form of a quadratic function is

$$f(x) = a(x-h)^2 + k$$

The vertex of the parabola is the point (h,k). If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Ex. Write the equation of the parabola whose vertex is (1,2) and that contains the point (0,0).

 $\gamma = a(x-h)^2 + k$ $\gamma = a(x-1)^2 + 2$ $0 = q(0-1)^2 + 2$ $0 = a(-1)^2 + 2$ 0 = a + 2a = - 2

 $y = -2(x-1)^2 + 2$

- End behavior of a polynomial
 - What happens off to the left (as $x \to -\infty$) and to the right (as $x \to \infty$)
- Intermediate Value Theorem <u>Ex.</u> Use the Intermediate Value Theorem to show that $f(x) = x^3 - x^2 + 1$ has a zero on the interval [-2,0]. $f(-2) = (-2)^3 - (-2)^2 + |z| = -8 - |t+1| = -1| < 0$ $f(x) = x^3 - 0^2 + 1 = -8 - |t+1| = -1| < 0$

• Polynomial division (or synthetic division)

Ex. Divide
$$x^{4} - 10x^{2} - 2x + 4$$
 by $x + 3$
 $x^{3} - 3x^{2} - x + 1 + \frac{1}{x+3}$
 $(x^{3} - 3x^{2} - x + 1 + \frac{1}{x+3})$
 $(x^{4} + 0x^{3} - 10x^{3} - 2x + 4)$
 $-x^{4} + 3x^{3}$
 $(x^{4} + 3x^{3} - 10x^{2})$
 $(x^{3} - 3x^{3} - 10x^{2})$
 $(x^{3} - 3x^{2} - 1 + 1)$
 $(x^{3} - 3x^{2} - 2x)$
 $(x^{3} - 3x^{2} - 2x$

٠

Ex. Find the rational zeroes of $f(x) = \int x^4 - x^4$ then factor.	$x^3 + x^2 - 3x \underbrace{6}_{,} \rightarrow 1, 2, 3, 6$
f(1) = 1 - 1 + 1 - 3 - 6 = -8 f(-1) = 1 + 1 + 1 + 3 - 6 = 0 = -1 is zero	$ \begin{bmatrix} -\frac{1}{2} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{1}{4} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \end{bmatrix} $
f(2): 16-8+4-6-6=0 $-1 -1 -3 -6$ $-1 -1 -3 -6$ $-1 -1 -3 -6$	$f(x) = (x+1)(x^{3}-2x^{2}+3x-6)$
y = 2 is q $z = 2 $ $z =$	$f(x) = (x+1)(x-2)(x^2+3)$

Ex. Find a fourth-degree polynomial that has 1, -1, and 3i as zeroes. y-31 f(x) = (x-1)(x+1)(x-3i)(x+3i) $f(x) = (x^{2}-1)(x^{2}+9)$ $f(x) = x^{4} + 8x^{2} - 9$

y is <u>directly proportional</u> (varies directly) to x if y = kx for some constant k

y is directly proportional to the
$$n^{\text{th}}$$
 power to *x* if $y = kx^n$ for some constant *k*

y is inversely proportional (varies inversely) to *x* if

$$y = \frac{k}{x}$$
 for some constant *k*
z is jointly proportional (varies jointly) to *x* and *y*
if *z* = *kxy* for some constant *k*

Ex. The state income tax is directly proportional to gross income. If the tax is \$46.05 for an income of \$1500, write a mathematical model for income tax.

- Rational Functions
 - Vertical asymptotes (when we divide by 0, maybe)
 - Horizontal asymptotes (value as graph goes left or right) look at lead terms on top and bottom
 - If degree on top is one more than degree on the bottom, look for a slant asymptote (divide)

$$\underline{\text{Ex. Graph } f(x) = \frac{x}{x^2 - x - 2} = \frac{x}{(x - 2)(x + 1)}$$

A) plug in 0: $f(0) = \frac{0}{0^2 - 0 - 2} = 0 \quad \text{(x - 1)}(x + 1)$

2) Factor

3) Set top = 0: $x = 0 \quad \text{(x - 1)}(x + 1) = 0$

(x - 2) $(x + 1) = 0$

• Conics (circles, parabolas, ellipses, hyperbolas)

A parabola with vertex (0,0) and directrix x = -phas the equation $y^2 = 4px$

The vertices and foci lie on the major (longer) axis. The foci lie *c* units from the center, where $c^2 = a^2 - b^2$.

A hyperbola centered at (0,0) with a horizontal transverse axis has equation

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

A hyperbola centered at (0,0) with a vertical transverse axis has equation $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$

The foci lie *c* units from the center, where $c^2 = a^2 + b^2$.

- X

ellipse <u>Ex.</u> Sketch $x^2 + 4y^2 + 6x - 8y + 9 = 0$ $x^{2} + 6x + 4y^{2} - 8y = -9$ $(x^{2}+6x+9)+4(y^{2}-2y+1)=-9+9+4$ $(\chi +3)^{2} + 4(\gamma -1)^{2} = 4$ $-\frac{4}{4}$ $\frac{(x+3)^{2}}{\sqrt{4}} + \frac{(y-1)^{2}}{\sqrt{4}} = 1$ a=2 / b=1 / b=1 / (enter: (-3, 1))

• Exponential Functions

Ex. Solve for x.

$$9^{x} = 3^{x+1}$$

 $(3^{2})^{x} = 3^{x+1}$
 $3^{2x} = 3^{x+1}$
 $2x = x+1$
 $x = 1$

When interest is compounded *n* times per year, we used the formula

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = \text{amount in bank}$$

$$P = \text{principal invested}$$

$$r = \text{interest rate}$$

$$t = \text{time (in years)}$$

If interest is compounded continually, we use the formula

$$A = Pe^{rt}$$

• Logarithmic functions

$$y = \log_{a} x \iff x = a^{y}$$

$$q^{y} = x$$

Ex. Evaluate by hand.
a)
$$\log_{22} x^{2} x^{2} \rightarrow 32 : 2^{*} \rightarrow \chi = 5$$

b)
$$\log_3 1 = 0$$

c)
$$\log_{03} = \chi \rightarrow 3 = q^{\chi} \rightarrow \chi = \frac{1}{2}$$

The logarithmic function with base 10 is called the <u>common logarithm</u> is can be written $f(x) = \log x$

The function $f(x) = \log_e x$ is called the <u>natural logarithm function</u>, and it is often written $f(x) = \ln x$

Properties of Logarithms

$$a^0 = 1 \quad \leftrightarrow \quad \log_a 1 = 0$$

$$a^1 = a \quad \longleftrightarrow \quad \log_a a = 1$$

Since exponents and logarithms are inverse, $a^{\log_a x} = x$ and $\log_a a^x = x$

Since logarithms are one-to-one, we know: If $\log_a x = \log_a y$, then x = y.

Properties of Logarithms

$$\log(AB) = \log A + \log B \longrightarrow \min H$$
 inside \Rightarrow add logs
 $\log\left(\frac{A}{B}\right) = \log A - \log B \longrightarrow div.$ inside \Rightarrow subtr. logs.
 $\log(A^n) = n \log A \longrightarrow \exp$ inside \Rightarrow coeff. outside

These apply to all logarithms, not just the common log

<u>Ex.</u> Find the exact value without a calculator a) $\log_5 \sqrt[3]{5} = \log_5(5''_3) = \frac{1}{3}$

• Exponential and Logarithmic Equations

 $\underline{\text{Ex. }} e^{x^2} = e^{-3x+4} \implies x^2 = -3 \times +4$

<u>Ex.</u> $2(3^{2x-5}) - 4 = 11$ $(2x-s)h^{3} = \int_{-\frac{15}{2}}^{\frac{15}{2}}$ $2x-5 = \frac{h(\frac{4}{2})}{h^{3}}$ $2x = \frac{h(\frac{4}{2})}{2} + 5$ $\frac{1}{4}(3^{2x-5}) = \frac{15}{2}$ $\frac{1}{2}(3^{2x-5}) = \frac{15}{2}(\frac{15}{2}),$ 尻(や) $\underline{\text{Ex.}} 5e^{2x} = e^{x-3}$

<u>Ex.</u> $\log_3(5x-1) = \log_3(x+7)$ 5x - 1 = x + 74x - 1 = 74x = 8x=2 $\underline{\text{Ex.}}\log_6(3x+14) - \log_6 5 = \log_6 2x$ $lg_6\left(\frac{3\times+14}{5}\right) = lg_6^2 Z X$ $\frac{3x+14}{5} = 2x$

• Exponential Models

Ex. The number N of bacteria in a culture is modeled by

$$N = 450e^{kt}$$
, where t is time in hours. If $N = 600$ when
 $t = 3$, estimate the time required for the population to
double. find pop. $a + t = 5$.
 $600 = 450e^{k(3)}$
 $M = 450e^{-0.06(5)}$
 $M = 450e^{-0.06(5)}$

- Solving systems of equations
 - Substitution
 - Elimination
 - Augmented matrix
- No solutions (all variables drop out and you're left with a false statement)
- Many solutions (all variables drop out and you're left with a true statement)

Ex. Solve the system $\begin{cases} x + y = 4 \\ x - y = 2 \end{cases}$ x: 3 $2\chi = 6$ $\chi = 3$ 3 + y = 4 y=1

 $\begin{cases} 5x + 3y = 9 - \frac{x^4}{3} - 20x + 20y = 36 \\ 2x - 4y = 14 - \frac{x^3}{3} - \frac{6x - 12y = 42}{3} \end{cases}$ Ex. Solve the system 26x = 78 x=3 2(3) - 4y = 146 - 4y = 143,-2 $-4\gamma = 8$

Ex. Solve the system
$$\begin{cases} x - 3y + z = 1 \\ 2x - y - 2z = 2 \\ x + 2y - 3z = -1 \end{cases} \begin{bmatrix} 1 & -3 & 1 & 1 \\ 2 & -1 & -2 & 2 \\ 1 & 2 & -3 & -1 \end{bmatrix}$$

•

Ex. Find a quadratic equation
$$y = ax^2 + bx + c$$
 that passes
through the points (-1,3), (1,1), and (2,6).
(-1,3) : $3 = q(-1)^2 + b(-1) + c \longrightarrow 3 = a - b + c$
(1,1) : $1 = a(1)^2 + b(1) + c \longrightarrow 1 = a + b + c$
(1,1) : $1 = a(1)^2 + b(1) + c \longrightarrow 6 = 4a + 2b + c$
(2,6) : $6 = q(2)^2 + b(2) + c \longrightarrow 6 = 4a + 2b + c$

- Using matrices to solve systems of equations
- Adding, subtracting, multiplying matrices
- Finding inverse matrix (shortcut for 2 x 2)
- Determinant of a matrix

- Sequences and series
- Arithmetic sequences/series
- Geometric sequences/series
- Binomial Theorem (including $_{n}C_{r}$)
- Counting Principal $({}_nP_r)$
- Probability

If you would like your final exam mailed to you, please bring a self addressed, stamped envelope (with 3 stamps) with you to the final.