Math 200 – Linear Algebra

Andy Rosen

www.rosenmath.com

Please Sign In

Systems of Linear Equations

A <u>system of linear equations</u> (or linear system) refers to multiple equations involving multiple variables

$$\begin{cases} 2x_1 - x_2 + 1.5x_3 = 8\\ x_1 & -4x_3 = -7 \end{cases}$$

<u>Linear</u> means each variable is to the 1st power <u>Coefficients</u> are the numbers multiplying the variables

In general, a linear equation would look like

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

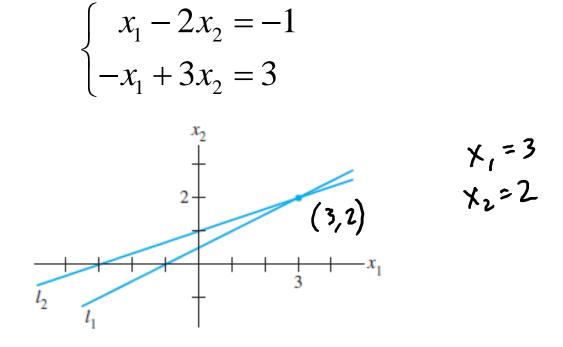
$$\begin{cases} 2x_1 - x_2 + 1.5x_3 = 8 \longrightarrow 2(s) - 6 \cdot 5 + 1 \cdot 5/3 = 8 \\ x_1 & -4x_3 = -7 \longrightarrow 5 & -4(3) = -7 \end{cases}$$

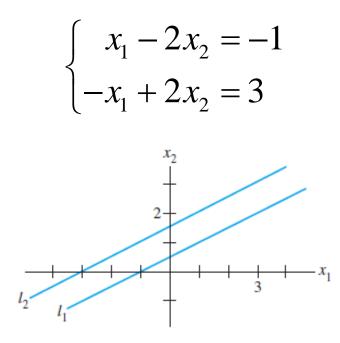
A <u>solution</u> is values of the variables that satisfy both equations.

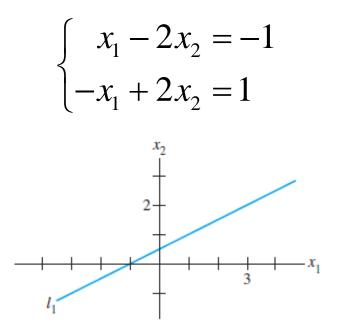
- \rightarrow (5, 6.5, 3) is a solution to the system above
- → There are other solutions to this system. The collection of all possible solutions to a system is called the <u>solution set</u>

Two systems are <u>equivalent</u> if they have to same solution set.

When solving a linear system with 2 variables and 2 equations, the solution is the point where the graphs of the lines intersect:







These lines are parallel
→ No solution
→ The system is inconsistent

These lines coincide → Infinitely many solution

A <u>matrix</u> is a rectangular array that can help us to streamline the solving of a system of equations

$$\begin{bmatrix} 3 & 5 & -2 \\ 1 & 0 & 9 \end{bmatrix}$$
 The size of this matrix is 2×3

By changing a system of equations into a matrix (augmented matrix), we can make it easier to

work with $\begin{cases} x_1 - 4x_2 + 3x_3 = 5 \\ -x_1 + 3x_2 - x_3 = -3 \\ 2x_1 + 4x_3 = 6 \end{cases} \xrightarrow{\begin{subarray}{c|c} x_1 & x_2 & x_3 \\ \hline 1 & -4 & 3 \\ -1 & 3 & -1 \\ 2 & 0 & 4 \\ \hline 1 & -3 \\ 2 & 0 & 4 \\ \hline 1 & -3 \\ 2 & 0 & 4 \\ \hline 1 & -3 \\ 2 & 0 & 4 \\ \hline 1 & -3 \\ \hline 1 & -3 \\ 2 & 0 & 4 \\ \hline 1 & -3 \\ \hline 1 & -$

The left side is called the coefficient matrix

$$\begin{bmatrix} 1 & -4 & 3 \\ -1 & 3 & -1 \\ 2 & 0 & 4 \end{bmatrix}$$

The following row operations will produce an equivalent system:

• Rows can be switched (interchange)

$$\begin{bmatrix} 1 & -4 & 3 & 5 \\ -1 & 3 & -1 & -3 \\ 2 & 0 & 4 & 6 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -1 & 3 & -1 & -3 \\ 1 & -4 & 3 & 5 \\ 2 & 0 & 4 & 6 \end{bmatrix}$$

The following row operations will produce an equivalent system :

• A row can be multiplied by a non-zero constant (scaling)

$$\begin{bmatrix} 1 & -4 & 3 & 5 \\ -1 & 3 & -1 & -3 \\ 2 & 0 & 4 & 6 \end{bmatrix} \xrightarrow{R_3 \to \P R_3} \begin{bmatrix} 1 & -4 & 3 & 5 \\ -1 & 3 & -1 & -3 \\ 8 & 0 & 16 & 24 \end{bmatrix}$$

The following row operations will produce an equivalent system :

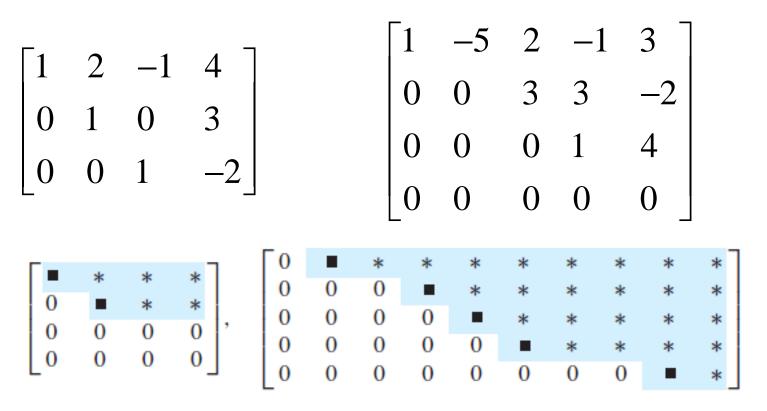
• A row can be replaced by the sum of itself and a multiple of another row (<u>replacement</u>)

$$\begin{bmatrix} 1 & -4 & 3 & 5 \\ -1 & 3 & -1 & -3 \\ 2 & 0 & 4 & 6 \end{bmatrix} \xrightarrow{R_3 \to R_2 + R_3} \begin{bmatrix} 1 & -4 & 3 & 5 \\ -1 & 3 & -1 & -3 \\ 1 & 3 & 3 & 3 \end{bmatrix}$$

We are going to use row operations to put a matrix into <u>echelon form</u>

- Any row with all zeroes is at the bottom
- Each <u>lead entry</u> (first nonzero entry, reading leftto-right) has zeroes below it

If each lead entry is 1, and if each 1 has zeroes above and below it, we say the matrix is in <u>reduced echelon form</u> These are in echelon form:



This is also called triangular form.

These are in reduced echelon form:

$$\begin{bmatrix} 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Γ1	0		. 7	0	1	*	0	0	0	*	*	0	*
	1	*	*	0	0	0	1	0	0	*	*	0	*
	1	*	* ,	0	0	0	0	1	0	*	*	0	*
	0	0		0	0	0	0	0	1	*	*	0	*
Lo	0	0	* * 0 0	0	0	0	0	0	0	0	0	1	*

To put a matrix into reduced echelon form:

• Use scaling or interchange to place a non-zero number (preferably 1) in the upper-left entry, then use it with replacement to get zeroes below

• Move down and right, repeating the process to put the matrix in echelon form

• Starting with the bottom right 1, work backward to put the matrix in reduced echelon form

$$\underbrace{Ex. \text{ Solve the system}}_{\begin{cases}x_1 - 2x_2 + x_3 = 0\\2x_2 - 8x_3 = 8\\-4x_1 + 5x_2 + 9x_3 = -9\end{cases}} \xrightarrow{x_1 - 2 - 1}_{x_2 - 8} \xrightarrow{x_3}_{x_3 - 8} \xrightarrow{x_1 - 2 - 1}_{x_3 - 8} \xrightarrow{x_1 - 2 - 1}_{x_3 - 8} \xrightarrow{x_1 - 2 - 8}_{x_3 - 8} \xrightarrow{x_1 - 2 - 8}_{x_3 - 9} \xrightarrow{x_1 - 2 - 9}_{x_3 - 9}$$

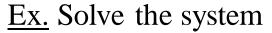
Because there was a solution, the system is consistent.

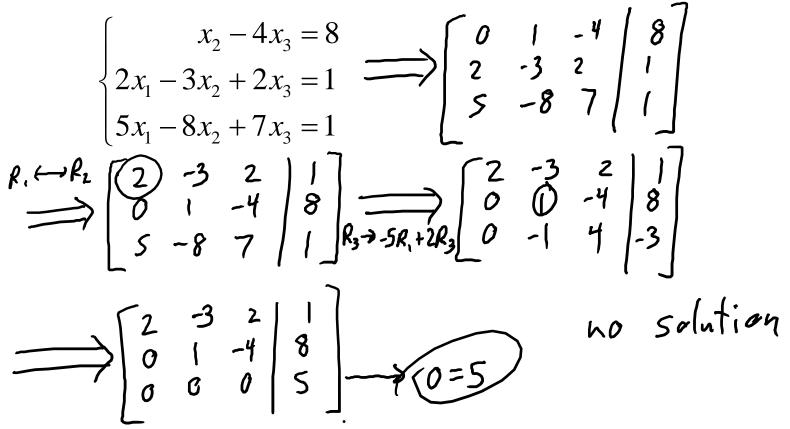
.

A matrix in echelon form may be different depending on the row operations you choose

 \rightarrow The reduced echelon form will be unique

Another option is to leave the augmented matrix in echelon form and then backsolve





Because there was no solution, the system is inconsistent.

A <u>pivot position</u> in matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A <u>pivot column</u> is a column of A that contains a pivot position.

 \rightarrow The previous system was inconsistent because the rightmost column was a pivot column

Ex. Reduce the matrix to echelon form and locate the pivot columns \neg

•

$$\begin{bmatrix} 0 & -3 & -6 & 4 & -9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix} \xrightarrow{R_1 \leftarrow 3R_4} \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & -9 \end{bmatrix} \xrightarrow{R_2 \rightarrow \frac{1}{2}R_2} \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 5 & 10 & -15 & -15 \\ 0 & -3 & -6 & 4 & -9 \end{bmatrix} \xrightarrow{R_2 \rightarrow \frac{1}{2}R_2} \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 0 & 2 & -3 & -3 \\ 0 & -3 & -6 & 4 & -9 \end{bmatrix} \xrightarrow{R_3 \rightarrow \frac{1}{5}R_3} \xrightarrow{R_3 \rightarrow \frac{1}{5}R_3} \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 0 & 2 & -3 & -3 \\ 0 & -3 & -6 & 4 & -9 \end{bmatrix} \xrightarrow{R_3 \rightarrow \frac{1}{5}R_3} \xrightarrow{R_3 \rightarrow \frac$$

Consider the system whose augmented matrix has been changed into the reduced echelon form

$$\begin{bmatrix} 1 & x_{1} & x_{3} \\ 0 & -5 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} x_{1} & -5x_{3} = 1 \\ x_{2} + x_{3} = 4 \\ 0 = 0 \end{cases}$$

The variables x_1 and x_2 are called <u>basic variables</u>. The variable x_3 is called a <u>free variable</u> because it is free to be anything.

$$\begin{cases} x_1 = 1 + 5x_3 \\ x_2 = 4 - x_3 \\ x_3 = x_3 \end{cases}$$

Choosing different values of x_3 results in different solutions

 $\underline{Ex.}$ Find the general solution of the linear system whose augmented matrix has been reduced to

~

This is called a <u>parametric description</u> of the solution set.

 \rightarrow The free variables can be considered to be parameters

Note that the basic variables corresponded with the pivot columns.

If a system is consistent, then the solution set contains either

- i. A unique solution, so there are no free variables, or
- ii. Infinitely many solutions, so there is at least one free variable.