\ectors

A matrix with only one column is called a
column vector, or simply a vector. R

L]

The set of all vectors with 2 entries is R? (read
R-two), since each of the two entries can be any
real number.

Two vectors are equal If the corresponding
entries are equal.



Ordered pairs in the xy-plane, like vectors In
R2, are represented by two numbers.

We can identify the plotted point (3,-1) with the

3
-1

column vector {

Sometimes, it is useful to include a directed line
segment (arrow) from the origin to the point,
though we are not mterested In any of the pomts

on the segment.
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points. FIGURE 2 Vectors with arrows.



Adding and subtracting vectors means performing
the operations on corresponding entries

Scalar multiplication means multiplying a vector
by a constant (scalar)

- We do this by multiplying each entry by the
constant







If uand v in R? are represented as points in the
Xy-plane, then u + v corresponds to the fourth
vertex of the parallelogram formed by u and v.
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Def. If c Is a scalar and v Is a vector, then cv is the
vector with the same direction as v that has
length ¢ times as long as v. If ¢ <0, then cv
goes In the opposite direction as V.
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These 1deas can be extended to n-dimensional
space, R™. -
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The zero vector, 0, IS the vector whose entries 0

are all zero.

Algebraic Properties of R"
For all m, v, w in " and all sealars ¢ and d:

() u+v=v+nu (v) cla+w) =cu+cv
(1) m+v)+w=u+(v+w) (vi) c+dm=cu+dn
(i) u+0=0+u=nmu (vi1) c(dua) = (cd)(u)
(iv) m+(—m) = —u+u=0, (vii1) lm=m

where —u denotes (—1)u



A linear combination of vectors involves
multiplying each vector by a constant coefficient
and adding the results.

I
IS a linear combination of vy, v,, ..., V,
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- The vector u= 7} IS a linear combinatio

— )
V, :|: :| and vV, :|: :| because U = 3V1 + 2V2
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The coefficients are called the weights of the
combination




Ex. Determine if b can be Writte_n as a linear

comblnatlon of a, and a,.
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Notice that the columns of our augmented matrix
were a,, a,, and b.

—> We can abbreviate by writing [a, azl D]
In general:

A vector equation x;a; + X,a, + ... + X,a, = b has
the same solution set as the linear system whose
augmented matrix is [a; a, ... &, b]




[ 3%, —2X,+X, =4
Ex. Convert <—x +5x, +2X, =6 to a vector equation.
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Def. If v,, ..., v, are vectors In R™, then the set of
all linear combinations of vy, ..., v, Is denoted
Span{v, ..., V,} and is called the subset of R™

spanned by vy, ..., V.
That Is, Span{v,, ..., Vp} Is the set of all vectors

that can be written c;v, + ... +c,v,, where
Cy,...,Cp are scalars.




In R3:
Span{Vv} is the line through the origin and v:
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Ex. Determine if b is in the pla_ne generate_d by_

Span{a, a,}. 1 5 -3
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The Matrix Equation

Let A be the matrix [a; a, ... a,], where each
of the a’s is a vector in R™, and let x be a vector
In R™. Then the product Ax is the linear
combination of the columns of A using the
entries of x as weights:

Ax=[a, a, .. a,]| M|=xa +Xa,+..+Xa,







_ X, +2X, =X, =4
Linear system:

—9X, +3%; =1
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Linear systems can be expressed In 3 different
ways, we can pick the one that’s most

convenient.



EX. Is the equation Ax = b consistent for all
possible by, b,, and b;? 1
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Thm. Let A be an m X n matrix and b be a vector in R™.
The following are equivalent (all are true or none are
true):

I. The equatioas a solution for any b in R™. L x:;,-..-, -l

Il. Every b in R™ is a linear combination of the columns
of A

1. The columns of A span R™ (every vector in R™ ig In
thg’span of the columns of AD — </ fix. c,»].]}. ’7[5 col. 4 A

IV. A has a pivot position in every row

Note: This iIs about the coefficient matrix, A, of a linear
system, not the augmented matrix [A [ b].



Ex. Can Ax = b be solved for any b in R3?
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Ex. Do the columns of A span R3?
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The 1dentity matrix Is a square matrix that has
ones on its main diagonal and zeroes as every
other entry 1 0 0 0]

0
1

o100
0010
000 1

Multiplying any vector by | results in the same
vector

IX =X
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