Vectors

A matrix with only one column is called a column vector, or simply a vector.

$$
\mathbf{u}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad \vec{u}
$$

The set of all vectors with 2 entries is \mathbb{R}^{2} (read R-two), since each of the two entries can be any real number.

Two vectors are equal if the corresponding entries are equal.

Ordered pairs in the $x y$-plane, like vectors in \mathbb{R}^{2}, are represented by two numbers.
We can identify the plotted point $(3,-1)$ with the column vector $\left[\begin{array}{c}3 \\ -1\end{array}\right]$.
Sometimes, it is useful to include a directed line segment (arrow) from the origin to the point, though we are not interested in any of the points on the segment.

FIGURE 1 Vectors as points.

FIGURE 2 Vectors with arrows.

Adding and subtracting vectors means performing the operations on corresponding entries
Scalar multiplication means multiplying a vector by a constant (scalar)
\rightarrow We do this by multiplying each entry by the constant

Ex. Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
a. $3 \mathbf{u}=\left[\begin{array}{c}6 \\ -9\end{array}\right]$
b. $3 \mathbf{u}-\mathbf{v}=\left[\begin{array}{c}6 \\ -9\end{array}\right]-\left[\begin{array}{l}4 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ -10\end{array}\right]$

If \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented as points in the $x y$-plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vertex of the parallelogram formed by \mathbf{u} and \mathbf{v}.

Def. If c is a scalar and \mathbf{v} is a vector, then $c \mathbf{v}$ is the vector with the same direction as \mathbf{v} that has length c times as long as \mathbf{v}. If $c<0$, then $c \mathbf{v}$ goes in the opposite direction as \mathbf{v}.

These ideas can be extended to n-dimensional space, \mathbb{R}^{n}.

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\mathrm{M} \\
u_{n}
\end{array}\right]
$$

The zero vector, $\mathbf{0}$, is the vector whose entries are all zero.

```
Algebraic Properties of }\mp@subsup{\mathbb{R}}{}{n
For all u,v,w in }\mp@subsup{\mathbb{R}}{}{n}\mathrm{ and all scalars }c\mathrm{ and }d\mathrm{ :
```

(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $c(d \mathbf{u})=(c d)(\mathbf{u})$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$,
(viii) $1 \mathbf{u}=\mathbf{u}$

A linear combination of vectors involves multiplying each vector by a constant coefficient and adding the results.

$$
\begin{aligned}
& \qquad \mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n} \\
& \text { is a linear combination of } \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}
\end{aligned}
$$

\rightarrow The vector $\mathbf{u}=\left[\begin{array}{l}14 \\ -7\end{array}\right]$ is a linear combination of $\left[\begin{array}{c}6 \\ -9\end{array}\right]+\left[\begin{array}{l}8 \\ 2\end{array}\right]$
$\mathbf{v}_{1}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ because $\mathbf{u}=3 \mathbf{v}_{1}+2 \mathbf{v}_{2}$.
The coefficients are called the weights of the combination

Ex. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.

$$
\begin{aligned}
& x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2} \stackrel{?}{=} \vec{b} \\
& x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right] \\
& {\left[\begin{array}{c}
x_{1} \\
-2 x_{1} \\
-5 x_{1}
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
5 x_{2} \\
6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-2 x_{2}+5 x_{2} \\
-5 x_{1} 6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right] \\
& \begin{array}{l}
x_{1}+2 x_{2}=7 \\
-2 x_{1}+5 x_{2}=4 \\
-5 x_{1}+6 x_{2}=-3
\end{array} \Rightarrow\left[\begin{array}{cc|c|c}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-5 & 6 & -3
\end{array}\right] \xrightarrow[R_{3} \rightarrow 3 R_{1}+R_{3} R_{3}]{p_{2}+2 R_{1}+R_{2}}\left[\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 9 & 18 \\
0 & 16 & 32
\end{array}\right] \\
& \xrightarrow[R_{3} \rightarrow \frac{1}{6} R_{3}]{R_{2} \rightarrow \frac{1}{9} R_{2}}\left[\begin{array}{ll|l}
1 & 2 & 7 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{2} R_{3}]{\longrightarrow}\left[\begin{array}{ll|l}
1 & 2 & 7 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \text { No pivot in right column } \\
& \therefore \text { System is consistent } \\
& \therefore \vec{b} \text { is - lin. comb. }
\end{aligned}
$$

Notice that the columns of our augmented matrix were $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{b}.
\rightarrow We can abbreviate by writing $\left[\begin{array}{ll|l}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}\end{array}\right]$ In general:
A vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n} \mid \mathbf{b}\end{array}\right]$

Ex. Convert $\left\{\begin{array}{c}3 x_{1}-2 x_{2}+x_{3}=4 \\ -x_{1}+5 x_{2}+2 x_{3}=6 \text { to a vector equation. } \\ 2 x_{1}-x_{2}-5 x_{3}=2\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
3 & -2 & 1 & 4 \\
-1 & 5 & 2 & 6 \\
2 & -1 & -5 & 2
\end{array}\right]} \\
& x_{1}\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
5 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
2 \\
-5
\end{array}\right]=\left[\begin{array}{l}
4 \\
6 \\
2
\end{array}\right]
\end{aligned}
$$

Def. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.
That is, $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the set of all vectors that can be written $c_{1} \mathbf{v}_{1}+\ldots+c_{p} \mathbf{v}_{p}$, where c_{1}, \ldots, c_{p} are scalars.

In \mathbb{R}^{3} :
$\operatorname{Span}\{\mathbf{v}\}$ is the line through the origin and \mathbf{v} :

$$
c \vec{v}
$$

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is the plane through the origin, \mathbf{u} and \mathbf{v} :

$$
c_{1} \vec{u}+c_{2} \vec{v}
$$

Ex. Determine if \mathbf{b} is in the plane generated by

$$
\left[\begin{array}{cc|c}
1 & 5 & -3 \\
-2 & -13 & 8 \\
3 & -3 & 1
\end{array}\right] \underset{R_{3} \rightarrow-3 R_{1}+R_{3}}{R_{2} \rightarrow 2 R_{1}+R_{2}}\left[\begin{array}{cc|c}
1 & 5 & -3 \\
0 & -3 & 2 \\
0 & -18 & 10
\end{array}\right] \underset{R_{3} \rightarrow-6 R_{2}+R_{3}}{\longrightarrow}\left[\begin{array}{cc|c}
1 & 5 & -3 \\
0 & -3 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

Pivot in right col.

$$
\begin{aligned}
& \therefore \text { Inconsist. } \\
& \therefore \vec{b} \text { nat in span }\left\{\vec{a}_{1}, \overrightarrow{a_{2}}\right\}
\end{aligned}
$$

The Matrix Equation

Let A be the matrix $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{\mathrm{n}}\end{array}\right]$, where each of the a's is a vector in \mathbb{R}^{m}, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product $A \mathbf{x}$ is the linear combination of the columns of A using the entries of \mathbf{x} as weights:

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\mathrm{M} \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

Ex. $\begin{aligned} {\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3 \\ 7\end{array}\right] } & =4\left[\begin{array}{l}1 \\ 0\end{array}\right]+3\left[\begin{array}{c}2 \\ -5\end{array}\right]+7\left[\begin{array}{c}-1 \\ 3\end{array}\right] \\ & =\left[\begin{array}{l}4 \\ 0\end{array}\right]+\left[\begin{array}{c}6 \\ -15\end{array}\right]+\left[\begin{array}{c}-7 \\ 21\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]\end{aligned}$
Ex. $\left[\begin{array}{ll}2 & -3 \\ 8 & 0 \\ -5 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 7\end{array}\right]=4\left[\begin{array}{c}2 \\ 8 \\ -5\end{array}\right]+7\left[\begin{array}{c}-3 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}8 \\ 32 \\ -20\end{array}\right]+\left[\begin{array}{c}-21 \\ 0 \\ 14\end{array}\right]=\left[\begin{array}{c}-13 \\ 32 \\ -6\end{array}\right]$
Ex. $\left[\begin{array}{ll}2 & -3 \\ 8 & 0 \\ -5 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 7 \\ 1\end{array}\right]=4\left[\begin{array}{c}2 \\ 8 \\ -5\end{array}\right]+7\left[\begin{array}{c}-3 \\ 0 \\ 2\end{array}\right]+1 ?$

Linear system:

$$
x_{1}+2 x_{2}-x_{3}=4
$$

$$
-5 x_{2}+3 x_{3}=1
$$

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 4 \\
0 & -5 & 3 & 1
\end{array}\right]
$$

Vector equation: $\quad x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}2 \\ -5\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
Matrix Equation: $\underset{A}{\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]} \underset{\vec{x}}{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]}=\underset{\vec{b}}{\left[\begin{array}{l}4 \\ 1\end{array}\right]} \quad A \vec{x}=\vec{b}$
Linear systems can be expressed in 3 different ways, we can pick the one that's most convenient.

Ex. Is the equation $A \mathbf{x}=\mathbf{b}$ consistent for all possible b_{1}, b_{2}, and b_{3} ?

$$
\begin{gathered}
\text { possible } b_{1}, b_{2} \text {, and } b_{3} \text { ? } \\
{\left[\begin{array}{ccc|c}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]} \\
\xrightarrow[R_{2} \rightarrow 4 R_{1}+R_{2}]{\longrightarrow}\left[\left.\begin{array}{ccc}
1 & 3 & 4 \\
0 & 14 & 10 \\
0 & 7 & 5
\end{array} \right\rvert\, \begin{array}{lll}
4 b_{1}+b_{2} \\
3 b_{1}+b_{3}
\end{array}\right] \xrightarrow[R_{3} \rightarrow-2 R_{3}+R_{2}]{\longrightarrow}\left[\begin{array}{ccc|c}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & 4 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}+b_{2}-2 b_{3}
\end{array}\right]
\end{gathered}
$$

It is passible that the pivot is in right col. \therefore not consist. far all b 's

Thm. Let A be an $m \times n$ matrix and \mathbf{b} be a vector in \mathbb{R}^{m}.
The following are equivalent (all are true or none are true):
i. The equatio $A \mathbf{x}=\mathbf{b}$ as a solution for any \mathbf{b} in \mathbb{R}^{m}. $x_{1} \vec{a}_{1}^{+} x_{2} \vec{a}_{2}+=\vec{b}$
ii. Every \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A
iii. The columns of A span \mathbb{R}^{m} (every vector in \mathbb{R}^{m} is in th span of the columns of $A D \rightarrow$ all lin. comb. of col. of A
iv. A has a pivot position in every row

Note: This is about the coefficient matrix, A, of a linear system, not the augmented matrix $[A \mid \mathbf{b}]$.

Ex. Can $A \mathbf{x}=\mathbf{b}$ be solved for any \mathbf{b} in \mathbb{R}^{3} ?

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & -1 & 6 \\
7 & 1 & -1 & 14 \\
5 & 1 & 1 & 2
\end{array}\right]} \\
& \stackrel{R_{2} \rightarrow-7 R_{1}+R_{2}}{\stackrel{\rightharpoonup}{R_{3} \rightarrow-S R_{1} 1 R_{3}}}\left[\begin{array}{cccc}
1 & 0 & -1 & 6 \\
0 & 1 & 6 & -28 \\
0 & 1 & 6 & -28
\end{array}\right] \\
& \stackrel{R_{3} \rightarrow R_{2} \rightarrow R_{3}}{ }\left[\begin{array}{cccc}
1 & 0 & -1 & 6 \\
0 & 1 & 6 & -28 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{llll}
1 & 0 & -1 & 6 \\
7 & 1 & -1 & 14 \\
5 & 1 & 1 & 2
\end{array}\right]
$$

no pivot in bottom raw \therefore can't be solved for every \vec{b}

Ex. Do the columns of A span \mathbb{R}^{3} ?

$$
\left.\left.\begin{array}{r}
{\left[\begin{array}{ccc}
7 & 1 & 2 \\
5 & -1 & 6 \\
-2 & 0 & 4
\end{array}\right] \xrightarrow[R_{3} \rightarrow-\frac{1}{2} R_{3}]{ }\left[\begin{array}{ccc}
7 & 1 & 2 \\
5 & -1 & 6 \\
1 & 0 & -2
\end{array}\right]} \\
\xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccc}
1 & 0 & -2 \\
5 & -1 & 6 \\
7 & 1 & 2
\end{array}\right] \xrightarrow[R_{3} \rightarrow-7 R_{1}+R_{3}]{R_{2} \rightarrow-5 R_{1}+R_{2}}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & -1 & 16 \\
0 & 1 & 16
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{2}+R_{3}]{ }\left[\begin{array}{ccc}
7 & 1 & 2 \\
5 & -1 & 6 \\
-2 & 0 & 4
\end{array}\right] \\
\text { Pivot in each row } \\
\therefore \text { columns span } \mathbb{R}^{3}
\end{array}\right] \begin{array}{ccc}
1 & -2 \\
0 & -1 & 16 \\
0 & 32
\end{array}\right]
$$

The identity matrix is a square matrix that has ones on its main diagonal and zeroes as every other entry

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Multiplying any vector by I results in the same vector

$$
I \mathbf{x}=\mathbf{x}
$$

