Solution Sets of Linear Systems

The linear system Ax = 0 is called homogeneous.

X,a; + X,a, + ..

This system always has at
all the x’s are 0. This is cal

Thm. The homogeneous ec

.+xa,=0
east 1 solution, where

led the trivial solution.

uation Ax =0 has a

nontrivial solution if and only if the equation has

at least one free variable.

—> So the homogeneous system has either one
trivial solution or infinitely many solutions.



Ex. Describe the solution set of 3%, +5%, —4X; =0
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1 free variable resulted in a line in R3.



EX. Describe the so

2 free variables resulted in a plane in R3.

ution set of 10x, —3x, —2x, =0




If A has no free variables:

 Trivial solution
 The point 0 in R?
If A has 1 free variable:

» Aline in R3 that passes through the origin
« Can be described parametrically by x = tv,.
If A has 2 free variables:

« Aplane in R3 that passes through the origin
* Can be described parametrically by x = sv; + tv,.
—> Note this represents Span{v; V,}

When we write our solution sets in this form, it is called the
parametric vector form.




If b + 0, the linear system Ax = b Is called
non-homogeneous.

X8, + X8, ... +Xxa,=b



. Describe the solution set of 3X, +9X, —4X; =7
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Ax = b has no solutions if:

« Ax = Db Is Inconsistent
Ax = b has 1 solution If:

« The corresponding homogeneous system had only the
trivial solution

AXx = b has infinitely many solutions If:

« The corresponding homogeneous system had infinitely
many solutions

 Solutions would be 1 vector plus a linear combination_
of vectors that satisfy the corresponding homogeneous
system.

—

X =p +tv, =2 aline not through the origin

* X=p+sv; +1tv, 2 aplane not through the origin



Prove the previous result:
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Linear Independence

A set of vectors vy, vy, ..., v, Is linearly
dependent If there exist constants Xy, X, ... , X
(not all zero) such that

P

XiVi+ XV + .o+ XV =0

-> This equation is called a linear dependence
relation.

—> The set Is linearly independent if
X; =X, = ... = X, = 0 1s the only solution.




Ex. Determine If the vectors are dependent. Find

a linear dependence relation. |1 4 2
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XV + XV, .+ XV, =0

-> Note this Is the same as our homogeneous
equation Ax =0, where the vectors are the
columns of A.

Thm. The following are equivalent:
I.  Ax =0 has only the trivial solution
Il. The columns of A are linearly independent

l1l. The linear system with augmented matrix
[A | 0] has no free variables

IV. A has a pivot in each column



EXx. Determine if the vectors are depen_dept.
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EX. Determine If the vectors are dependent.
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Two vectors are linearly dependent if one is a
multiple of the other.

X,

(6,2)

(3. 1)

Linearly dependent

/ ' Note: This doesn’t
work for more than 2

vectors!

Linearly independent



Thm. A set of two or more vectors is linearly
dependent if and only if at least one is a linear
combination of the others.

EX. Describe the set spanned by u and v.
Explain why a vector w is in Span{u,v} if and
only if {u, v, w} IS linearly dependent
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Thm. If a set contains more vectors than there are
entries in each vector, then the set Is dependent.

EXx. Show that the set Is dependent. {2} {4} {_2}}
1| -1 2
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Thm. If a set contains the zero vector, then the set
IS dependent.
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EX.

Determine If the set Is dependent.
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