Intro to Linear Transformations

Def. A function f from set A to set B is a relation that assigns to each element x in set A exactly one element y in set B.

$$
\begin{gathered}
{\left[\begin{array}{llll}
4 & -3 & 1 & 3 \\
2 & 0 & 5 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right]} \\
A \mathbf{x}=\mathbf{b}
\end{gathered}
$$

We can think of A as transforming \mathbf{x} in \mathbb{R}^{4} to \mathbf{b} in \mathbb{R}^{2}.

A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
\mathbb{R}^{n} is the domain
\mathbb{R}^{m} is the codomain
The set of all $T(\mathbf{x})$ is called the range
\rightarrow The range is a subset of the codomain
The rest of this section will focus on mappings associated with matrix multiplication

$$
\mathbf{x} \mapsto A \mathbf{x}
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. If $\mathbf{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, find $T(\mathbf{u})$.

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

$$
T(\vec{u})=A \vec{u}=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=2\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]+\left(-11\left[\begin{array}{c}
-1 \\
-3 \\
5 \\
7
\end{array}\right]\right.
$$

$$
\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \longrightarrow\left[\begin{array}{c}
5 \\
1 \\
-9
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
2 \\
6 \\
-2
\end{array}\right]+\left[\begin{array}{c}
3 \\
-5 \\
-7
\end{array}\right]=\left[\begin{array}{c}
5 \\
1 \\
-9
\end{array}\right]
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
b. If $\mathbf{b}=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$, find an \mathbf{x} whose image under $\left.\left[\begin{array}{c}-1 / 2\end{array}\right] \rightarrow \begin{array}{c} \\ -5\end{array}\right]$ is \mathbf{b}.
$\Rightarrow\left[\begin{array}{cc|c}1 & -3 & 3 \\ 0 & 1 & -1 / 2 \\ 0 & 1 & -1 / 2\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}1 & -3 & 3 \\ 0 & 1 & -1 / 2 \\ 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}1 & 0 & 3 / 2 \\ 0 & 1 & -1 / 2 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \begin{aligned} & x_{1}=\frac{3}{2} \\ & x_{2}=\frac{-1}{2} \\ & \\ & \\ & \end{aligned}$

Was this answer unique?

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right] \stackrel{\rightharpoonup}{x}=\left[\begin{array}{l}
3 / 2 \\
-1 / 2
\end{array}\right]
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
T(\mathbf{x})=A \mathbf{x}
$$

$$
\begin{aligned}
& \text { c. If } \mathbf{c}=\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right] \text {, find an } \mathbf{x} \text { whose image under } T \text { is } \mathbf{c} . \\
& A \vec{x}=\vec{c}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
\end{aligned}
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
T(\mathbf{x})=A \mathbf{x} .
$$

d. Find all \mathbf{x} that are mapped into the zero vector.
$\begin{aligned} A \vec{x}= & \overrightarrow{0}\left[\begin{array}{cc|c}1 & -3 & 0 \\ 3 & 5 & 0 \\ -1 & 7 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}1 & -3 & 0 \\ 0 & 14 & 0 \\ 0 & 4 & 0\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right] \\ & \Rightarrow\left[\begin{array}{cc|c}1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\end{aligned} \Rightarrow\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \Rightarrow x_{1}=0=\vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

Ex. Find the image of \mathbf{x} under the transformation

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
3 \\
8 \\
4
\end{array}\right] \\
& \begin{aligned}
& A \vec{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
8 \\
4
\end{array}\right] \\
&=3\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+8\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+4\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
8 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
8 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
3 \\
8 \\
4
\end{array}\right] \rightarrow\left[\begin{array}{l}
3 \\
8 \\
0
\end{array}\right] }
\end{aligned}
\end{aligned}
$$

This projects the point onto the $x_{1} x_{2}$-plane.

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}.
\rightarrow The range makes up the entire codomain
\rightarrow Every vector in \mathbb{R}^{m} is the output at least once

T is not onto \mathbb{R}^{m}

T is onto \mathbb{R}^{m}

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if every \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.
\rightarrow Every vector in the range is an output exactly once
\rightarrow Not all vectors in \mathbb{R}^{m} are outputs
$\rightarrow T(\mathbf{x})$ has either a unique solution or no solution

Ex. Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Does T map \mathbb{R}^{4} onto \mathbb{R}^{3} ? Is T one-to-one?
onto: Every \vec{b} is an output?
$\begin{aligned} & A \vec{x}=\vec{b} \text { has a solution for all } \vec{b} \text { ? } \\ & {\left[\begin{array}{cccc}1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5\end{array}\right] \text { will be consist? }}\end{aligned} \quad A=\left[\begin{array}{llll}1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5\end{array}\right]$
yes, it is onto because A has pivot in every row one-torone: Solutions to $A \vec{x}=\vec{b}$ are unique?
$\left[\begin{array}{cccc|c}1 & -4 & 8 & 1 & \vec{b} \\ 0 & 2 & -1 & 3 & 5 \\ 0 & 0 & 0 & 5 & \end{array}\right]$ has unique solution?
na, not one-to-one because net pivot in every column

We remember properties of vector/matrix/scalar addition and multiplication:
Distributive: $A(\mathbf{u}+\mathbf{v})=A(\mathbf{u})+A(\mathbf{v})$

$$
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})
$$

Commutative: $A(c \mathbf{u})=c A(\mathbf{u})$

$$
T(c \mathbf{u})=c T(\mathbf{u})
$$

These lead to the properties of a linear transformation T.

For any linear transformation,

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
$$

In particular, $T(\mathbf{0})=\mathbf{0}$.
\rightarrow This can be generalized to be true for any number of vectors. This is called the superposition principle.

Ex. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=3 \mathbf{x}$. Show that T is a linear transformation.

$$
\begin{aligned}
& T(\vec{u}+\vec{v})=3(\vec{u}+\vec{v})=3 \vec{u}+3 \vec{v}=T(\vec{u})+T(\vec{v}) \\
& T(c \vec{u})=3(c \vec{u})=3 c \vec{u}=c 3 \vec{u}=c(3 \vec{u})=c T(\vec{u}) v
\end{aligned}
$$

What does this transformation represent graphically?

Ex. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \mathbf{x}$.

$$
\text { rotate } 90^{\circ} \mathrm{ccW}
$$

What does this transformation represent graphically?

Matrix of a Linear Transformation

We have been talking about different linear transformations, not just ones that are matrix multiplication.
In fact, all linear transformations can be represented by a matrix multiplication.

To find the matrix, we will be using the columns of I_{n}, which we will call $\mathbf{e}_{1}, \mathbf{e}_{2}$, etc.

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

These are called the standard basis vectors of \mathbb{R}_{3}.

Ex. Suppose T is a linear transformation such that $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}5 \\ -7 \\ 2\end{array}\right]$ and $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}-3 \\ 8 \\ 0\end{array}\right]$. Describe the image of an arbitrary $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

$$
\begin{aligned}
T(\vec{x}) & =T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
x_{1} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
x_{2}
\end{array}\right]\right)=T\left(x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =T\left(x_{1} \overrightarrow{e_{1}}+x_{2} \vec{e}_{2}\right)=x_{1} T\left(\overrightarrow{e_{1}}\right)+x_{2} T\left(\overrightarrow{e_{2}}\right) \\
& =x_{1}\left[\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
8 \\
0
\end{array}\right]=\left[\begin{array}{cc}
5 & -3 \\
-7 & 8 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

Thm. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, there is a unique $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x}.
\rightarrow The columns of A will be the transformation of the columns of I. In other words:

$$
A=\left[\begin{array}{lll}
T\left(\mathbf{e}_{1}\right) & \ldots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

\rightarrow This is called the standard matrix for the linear transformation.
\rightarrow Please note mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ requires a matrix that is $m \times n$.

Ex. Find the standard matrix for the transformation that rotates each point in \mathbb{R}^{2} counterclockwise about the origin through an angle φ.

$$
\begin{aligned}
& T\left(\overrightarrow{e_{1}}\right)=\left[\begin{array}{c}
\cos \varphi \\
\sin \varphi
\end{array}\right] \\
& T\left(\overrightarrow{e_{2}}\right)=\left[\begin{array}{c}
-\sin \varphi \\
\cos \varphi
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

p. 73-75 has the standard matrices for several common geometric linear transformations.
\rightarrow Even more transformations come from the composition of transformations.

Ex. Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Does T $\operatorname{map} \mathbb{R}^{4}$ onto \mathbb{R}^{3} ? Is T one-to-one?

It is onto because pivot in each row.

$$
A=\left[\begin{array}{llll}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

It is not one-to-one because not pivot in each column.

Thm. Consider the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. The following are equivalent:
i. $\quad T$ is one-to-one.
ii. A has a pivot in each column.
iii. A has no free variables.
iv. The columns of A are linearly independent.
v. The equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.
\rightarrow This links us with all of the equivalent statements from last class.

The. Consider the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. The following are equivalent:
i. $\quad T$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.
ii. A has a pivot in each row.
iii. The columns of A span \mathbb{R}^{m}.

$$
\begin{gathered}
A \vec{x}=\vec{b} \text { is consist. } \\
\text { for every } \vec{b}
\end{gathered}
$$

Ex. Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$.
Does T map \mathbb{R}^{2} onto \mathbb{R}^{3} ? Is T one-to-one?

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
3 x_{1}+x_{2} \\
5 x_{1}+7 x_{2} \\
x_{1}+3 x_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
5 \\
1
\end{array}\right] \\
& T\left(\overrightarrow{e_{2}}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
7 \\
3
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 7 \\
1 & 3
\end{array}\right]
$$

Is it onto? Is there a pivot in each row?
no
Is it one-to-one? Is there a pivot in each column? columns not multiples.
\therefore columns are indep.
\therefore one -to- one

Ex. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2},-3 x_{1}+x_{2}, 2 x_{1}-3 x_{2}\right)$. Find \mathbf{x} such that

$$
\begin{gathered}
T(\mathbf{x})=(0,-1,4) . \\
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
-3 x_{1}+x_{2} \\
2 x_{1}-3 x_{2}
\end{array}\right] \Longrightarrow T(\vec{x})=\left[\begin{array}{cc}
2 & -1 \\
-3 & 1 \\
2 & -3
\end{array}\right] \vec{X}=\left[\begin{array}{c}
0 \\
-1 \\
4
\end{array}\right] \\
{\left[\begin{array}{cc|c}
2 & -1 & 0 \\
-3 & 1 & -1 \\
2 & -3 & 4
\end{array}\right] \Longrightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & -1 & -2 \\
0 & 2 & -4
\end{array}\right] \Longrightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & -1 & -2 \\
0 & 0 & -8
\end{array}\right]}
\end{gathered}
$$

