Matrix Operations

$$
\left[\begin{array}{cccc}
3 & 5 & -2 & 3 \\
1 & 0 & 9 & 7 \\
-4 & 8 & 6 & -3
\end{array}\right]
$$

The 5 is entry a_{12} because it is in the $1^{\text {st }}$ row and $2^{\text {nd }}$ column

Entries a_{11}, a_{22}, etc. are called the main diagonal
A diagonal matrix is a square $(n \times n)$ matrix whose nondiagonal entries are $0 .\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]$

Two matrices are equal if they have the same order and if the corresponding entries are equal
Adding and subtracting matrices means performing the operations on corresponding entries

- The matrices must have the same order, and the result will also have that order

Ex.
a. $\underset{2 \times 2}{\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right]}+\underset{2 \times 2}{\left[\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right]}=\underset{2 \times 2}{\left[\begin{array}{cc}0 & 5 \\ -1 & 3\end{array}\right]}$
b. $\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & 2 & 3\end{array}\right]-\left[\begin{array}{lll}-3 & 1 & 4 \\ 0 & 2 & -5\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & -6 \\ 1 & 0 & 8\end{array}\right]$

Scalar multiplication means multiplying a matrix

 by a constant- We do this by multiplying each entry by the constant

Let A, B, and C be matrices of the same size, and let r and s be scalars.
a. $A+B=B+A$
b. $(A+B)+C=A+(B+C)$
c. $A+0=A$
d. $r(A+B)=r A+r B$
e. $(r+s) A=r A+s A$
f. $r(s A)=(r s) A$

Ex. Let $A=\left[\begin{array}{ccc}2 & 2 & 4 \\ -3 & 0 & -1 \\ 2 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & -4 & 3 \\ -1 & 3 & 2\end{array}\right]$
a. $3 A=\left[\begin{array}{ccc}6 & 6 & 12 \\ -9 & 0 & -3 \\ 6 & 3 & 6\end{array}\right]$
b. $3 A-B$

When multiplying two matrices, we take a row from the first matrix and multiply it by a column from the second matrix
The orders have to match up:

$$
\underset{4 \times 3}{A \times} \underset{3 \times 7}{B}=\underset{4 \times 7}{A} B
$$

$$
\left.\begin{array}{c}
\text { Ex. }\left[\begin{array}{ccc}
1 & 0 & 3 \\
2 & -1 & -2
\end{array}\right] \times\left[\begin{array}{ll}
-2 & 4 \\
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
-5 & 7 \\
-3 & 6
\end{array}\right] \\
2 \times 2
\end{array}\right] \begin{aligned}
& (1)(-2)+(0)(1)+(3)(-1)=-5 \\
& (1)(4)+(0)(0)+(3)(1)=7 \\
& (2)(-2)+(-1)(1)+(-2)(-1)=-3 \\
& (2)(4)+(-1)(0)+(-2)(1)=6
\end{aligned}
$$

$$
\begin{aligned}
\text { Ex. } & {\left[\begin{array}{ll}
\frac{1}{2} & 2 \\
3 & 4
\end{array}\right] \times\left[\begin{array}{ccc}
-3 & 1 & 6 \\
4 & 8 & 3
\end{array}\right] }
\end{aligned}=\frac{\left[\begin{array}{ccc}
5 & 17 & 12 \\
7 & 35 & 30
\end{array}\right]}{2 \times 3} 2 \times 3 \times 2 \times 3
$$

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=(A B) C$
(associative law of multiplication)
b. $A(B+C)=A B+A C$
(left distributive law)
c. $(B+C) A=B A+C A$
(right distributive law)
d. $r(A B)=(r A) B=A(r B)$
for any scalar r
e. $I_{m} A=A=A I_{n}$
(identity for matrix multiplication)

$\underset{2 \times 2}{\text { Ex. }} \underset{2 \times 2}{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{cc}-3 & 1 \\ 4 & 8\end{array}\right]}=\underset{2 \times 2}{\left[\begin{array}{cc}5 & 17 \\ 7 & 35\end{array}\right]}$

Cautions

i. In general, $A B \neq B A$. If fact, depending on the sizes, both products may not be possible.
ii. Cancellation laws do not hold. In other words, if $A B=A C$, it may not be true that $B=C$.
iii. If $A B=0$, it may not be true that $A=0$ or $B=0$.
$\rightarrow A^{\mathrm{T}}$ (transpose) switches $a_{i j}$ with $a_{j i}$
Ex. Find the transpose of each matrix:
a. $\quad A=\left[\begin{array}{ccc}(2) & -1 & (3) \\ 0 & 4 & 6 \\ -6 & 10 & -5\end{array}\right] \quad A^{\top}=\left[\begin{array}{ccc}2 & 0 & -6 \\ -1 & 4 & 10 \\ 3 & 6 & -5\end{array}\right]$
b. $B=\left[\begin{array}{cc}-5 & 2 \\ 1 & -3 \\ 0 & 4\end{array}\right] \quad B^{\top}=\left[\begin{array}{ccc}-5 & 1 & 0 \\ 2 & -3 & 4\end{array}\right]$
c. $\quad C=\left[\begin{array}{ccc}1 & 1 & 1 \\ -3 & 5 & -2\end{array}\right]$

Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=A$
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$

$$
\left(\begin{array}{cc}
A B \\
4 \times 3 & 3 \times 7
\end{array}\right)^{\top}=7 \times 4
$$

$$
\underset{7 \times 3}{B^{\top}}{\underset{3}{ } A^{\top}}^{A^{\prime}}={ }_{7 \times 4}
$$

Inverse Matrices

2 and $1 / 2$ are multiplicative inverses because

$$
2 \times\left(\frac{1}{2}=1 \longrightarrow 2^{-1}\right.
$$

The inverse of matrix A is written A^{-1}, and

$$
A A^{-1}=I \text { and } A^{-1} A=I
$$

where I is the identity matrix
If a matrix has an inverse, we say that it is invertible

- Otherwise, we say that it is singular
- Only square matrices can be invertible

Ex. Show that $A=\left[\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

For a 2×2 matrix, there's a quick way to find the inverse:

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
The quantity $a d-b c$ is called the determinant of the matrix:

$$
\operatorname{det} A=a d-b c
$$

We'll come back to this in the future...

Ex. Find the inverse

$$
\begin{array}{lc}
\text { a. } A=\left[\begin{array}{cc}
3 & -1 \\
-2 & 2
\end{array}\right] & A^{-1}=\frac{1}{6-2}\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 / 2 & 1 / 4 \\
1 / 2 & 3 / 4
\end{array}\right] \\
\text { b. } B=\left[\begin{array}{cc}
3 & -1 \\
-6 & 2
\end{array}\right] & B^{-1}=\frac{1}{6-6}\left[\begin{array}{ll}
2 & 1 \\
6 & 3
\end{array}\right]=77 \\
\text { singular }
\end{array}
$$

To solve the equation $a x=b$, we multiply by the multiplicative inverse $\frac{1}{a}$:

$$
\begin{aligned}
a x & =b \\
\frac{1}{a} a x & =\frac{1}{a} b \\
x & =\frac{b}{a}
\end{aligned}
$$

To solve a matrix equation, we do the same

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A^{-1} A \mathbf{x} & =A^{-1} \mathbf{b} \\
\mathbf{x} & =A^{-1} \mathbf{b}
\end{aligned}
$$

Ex. Solve the system $\left\{\begin{array}{l}3 x_{1}+4 x_{2}=-2 \\ 5 x_{1}+3 x_{2}=4\end{array}\right.$

$$
\begin{aligned}
{\left[\begin{array}{cc}
3 & 4 \\
5 & 3
\end{array}\right] \vec{x} } & =\left[\begin{array}{c}
-2 \\
4
\end{array}\right] \\
\vec{x} & =A^{-1} \vec{b} \\
& =\frac{1}{-11}\left[\begin{array}{cc}
3 & -4 \\
-5 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
4 \\
4
\end{array}\right] \\
& =\frac{1}{-11}\left[\begin{array}{c}
-22 \\
22
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
\end{aligned}
$$

The.
i. $\quad\left(A^{-1}\right)^{-1}=A$

$$
A \cdot B=A\left(A^{-1}\right)=I
$$

ii. $(A B)^{-1}=B^{-1} A^{-1}$

$$
\left(B^{-1} A^{-1}\right) C=B^{-1} A^{-1} A B=B^{-1} B=I
$$

iii. ()$\left.^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Lei $=$ = prove these results.

$$
\begin{aligned}
\left(A^{-1}\right)^{\top} D=\left(A^{-1}\right)^{\top} A^{\top} & =\left(A A^{-1}\right)^{\top} \\
& =I^{\top}=I
\end{aligned}
$$

For larger matrices, to find an inverse matrix we use row operations

- Create the matrix $[A \mid I]$
- Perform row operations to make the left side into I
- The result will be $\left[I \mid A^{-1}\right]$

Ex. Find the inverse of $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 \\
6 & -2 & -3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 4 & -3 & -6 & 0 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & -2 & -4 & 1
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -3 & -3 & 1 \\
0 & 0 & 1 & -2 & -4 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & -2 & -3 & 1 \\
0 & 1 & 0 & -3 & -3 & 1 \\
0 & 0 & 1 & -2 & -4 & 1
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{lll}
-2 & -3 & 1 \\
-3 & -3 & 1 \\
-2 & -4 & 1
\end{array}\right]
\end{aligned}
$$

Thm. Invertible Matrix Theorem
Let A be $n \times n$. The following are equivalent:
i. A is invertible
ii. A is row equivalent to I.
iii. A has n pivot positions (one in each row and column).
iv. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
v. The columns of A are linearly independent.
vi. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
vii. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}.
viii. The columns of A span \mathbb{R}^{n}.
ix. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.

A is invertible		
A is row equiv. to I		
\\|		
A has n pivot points		
$\boxed{\square}$	\triangle	
Pivot in every row	Pivot in every column	
\\|	1	
$A \mathbf{x}=\mathbf{b}$ has at least one solution	$A \mathbf{x}=\mathbf{b}$ has at most one solution	
\\|	1	
Columns span \mathbb{R}^{n}	Columns are linearly indep.	
\\|	1	
Transformation is onto	$A \mathbf{x}=\mathbf{0}$ only trivial solution	
	Transformation is one-to-one	

Ex. Determine if A is invertible.

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 4 \\
0 & -1 & -1
\end{array}\right] \Rightarrow\left[\begin{array}{llc}
0 & 0 & -2 \\
0 & 1 & 4 \\
0 & 0 & 3
\end{array}\right]
$$

pivot in every row and column
$\therefore A$ is inv.

Matrices A and B are inverses if $A B=I$ and $B A=I$.
\rightarrow Transformations T and S are inverses if

$$
T(S(\mathbf{x}))=\mathbf{x} \quad \text { and } \quad S(T(\mathbf{x}))=\mathbf{x}
$$

In fact, if A is the standard matrix for T, then A^{-1} is the standard matrix for T^{-1}.

