
Matrix Operations
3 5 2 3

1 0 9 7

4 8 6 3

− 
 
 
− −  

The 5 is entry a12 because it is in the 1st row and 

2nd column

Entries a11, a22, etc. are called the main diagonal

A diagonal matrix is a square (𝑛 × 𝑛) matrix 

whose nondiagonal entries are 0. 3 0 0

0 1 0

0 0 5

 
 
 
  



Two matrices are equal if they have the same 

order and if the corresponding entries are equal

Adding and subtracting matrices means 

performing the operations on corresponding 

entries

- The matrices must have the same order, and the 

result will also have that order



Ex.

a.

b.

1 2 1 3

0 1 1 2

−   
+   −   

0 1 2 3 1 4

1 2 3 0 2 5

− −   
−   −   



Scalar multiplication means multiplying a matrix 
by a constant

- We do this by multiplying each entry by the 

constant



Ex. Let

a. 3A

b. 3A – B

2 2 4 2 0 0

3 0 1 and 1 4 3

2 1 2 1 3 2

A B

   
   = − − = −
   

−      



When multiplying two matrices, we take a row 

from the first matrix and multiply it by a column 

from the second matrix

The orders have to match up:

4 3 3 7 4 7
A B AB
  
 =



Ex.

2 4
1 0 3

1 0
2 1 2

1 1

− 
      − − 

−  

( 2) (1(1) (0) () ( 1)3) 5− −+ + = −

(4) (0)(1) (0) ( ) 73)(1+ + =

( 2) (1(2) ( 1) ( 2)) ( 1 3)− −+−+ = −−

(4) (0( )2) ( 61 (1) ( )2)+ + − =−

2 4
1 0

1 0
2 1 2

11

3
−

−

 
      
 

  
− −

5− 
=  
 

5 7− 
=  
 

5 7

3

− 
=  − 

5 7

3 6

− 
=  − 



Ex.
1 2 3 1 6

3 4 4 8 3

−   
   

   





Ex.
1 2 3 1

3 4 4 8

−   
   

   



Ex.
3 1 1 2

4 8 3 4

−   
   

   



Cautions

i. In general, 𝐴𝐵 ≠ 𝐵𝐴.  If fact, depending on 

the sizes, both products may not be possible.

ii. Cancellation laws do not hold.  In other words, 

if 𝐴𝐵 = 𝐴𝐶, it may not be true that 𝐵 = 𝐶.

iii. If 𝐴𝐵 = 0, it may not be true that 𝐴 = 0 or 

𝐵 = 0.



→AT (transpose) switches aij with aji

Ex. Find the transpose of each matrix:

a.  A =
2 −1 3
0 4 6
−6 10 −5

b.  𝐵 =
−5 2
1 −3
0 4

c.  𝐶 =
1 1 1
−3 5 −2





Inverse Matrices

2 and ½ are multiplicative inverses because

The inverse of matrix A is written A-1, and

where I is the identity matrix

If a matrix has an inverse, we say that it is 
invertible

• Otherwise, we say that it is singular

• Only square matrices can be invertible

1
2

2 1 =

1 1andAA I A A I− −= =



Ex. Show that                         and                      
are inverses

1 2

1 1
A

− 
=  − 

1 2

1 1
B

− 
=  − 



For a 2 × 2 matrix, there's a quick way to find the 

inverse:

If                     , then 

The quantity ad – bc is called the determinant of the 

matrix:

det A = ad – bc

We’ll come back to this in the future…

a b
A

c d

 
=  
 

1 1 d b
A

c aad bc

−
− 

=  −−  



Ex. Find the inverse

a. 

b.

3 1

2 2
A

− 
=  − 

3 1

6 2
B

− 
=  − 



To solve the equation ax = b, we multiply by the 

multiplicative inverse   :

To solve a matrix equation, we do the same 

1
a

1 1
a

b
a

a

ax b

ax b

x

=

=

=

1

1

1A A

A

A

A

−

−

−

=

=

=

x b

x b

x b



Ex. Solve the system
1 2

1 2

3 4 2

5 3 4

x x

x x

+ = −


+ =



Thm.

i. 𝐴−1 −1 = 𝐴
ii. 𝐴𝐵 −1 = 𝐵−1𝐴−1

iii. 𝐴𝑇 −1 = 𝐴−1 𝑇

Let’s prove these results.



For larger matrices, to find an inverse matrix 

we use row operations

• Create the matrix [A I]

• Perform row operations to make the left side 

into I

• The result will be [I  A-1]



Ex. Find the inverse of 

1 1 0

1 0 1

6 2 3

A

− 
 = −
 

− −  



Thm. Invertible Matrix Theorem

Let A be 𝑛 × 𝑛. The following are equivalent:

i.  A is invertible

ii.  A is row equivalent to I.

iii.  A has n pivot positions (one in each row and column).

iv. The equation Ax = 0 has only the trivial solution.

v. The columns of A are linearly independent.

vi. The linear transformation 𝐱 ↦ 𝐴𝐱 is one-to-one.

vii.  The equation Ax = b has a unique solution for all b.

viii. The columns of A span ℝ𝑛.

ix. The linear transformation 𝐱 ↦ 𝐴𝐱 maps ℝ𝑛 onto ℝ𝑛.



A is invertible

⇕
A is row equiv. to I

⇕
A has n pivot points

Pivot in every row

⇕
Ax = b has at least one solution

⇕
Columns span ℝ𝑛

⇕
Transformation is onto

Pivot in every column

⇕
Ax = b has at most one solution

⇕
Columns are linearly indep.

⇕
Ax = 0 only trivial solution

⇕
Transformation is one-to-one



Ex. Determine if A is invertible.

1 0 2

3 1 2

5 1 9

A

− 
 = −
 
− −  



Matrices A and B are inverses if AB = I and BA = I.

→Transformations T and S are inverses if

T(S(x)) = x    and   S(T(x)) = x

In fact, if A is the standard matrix for T, then A-1 is 

the standard matrix for T-1.
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