Matrix Operations								
	3	5	-2	3				
	1	0	9	7				
	4	8	6	-3_				

The 5 is entry a_{12} because it is in the 1st row and 2nd column

Entries a_{11} , a_{22} , etc. are called the <u>main diagonal</u> A <u>diagonal matrix</u> is a square $(n \times n)$ matrix whose nondiagonal entries are 0. $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

Two matrices are equal if they have the same order and if the corresponding entries are equal

Adding and subtracting matrices means performing the operations on corresponding entries

- The matrices must have the same order, and the result will also have that order

$$\frac{\text{Ex.}}{\text{a.}} \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 5 \\ \cdot & 3 \end{bmatrix}$$
$$\frac{2^{2}}{2^{2}} = \frac{2^{2}}{2^{2}} = \frac{2^$$

b.
$$\begin{bmatrix} 0 & 1 & -2 \\ 1 & 2 & 3 \end{bmatrix} - \begin{bmatrix} -3 & 1 & 4 \\ 0 & 2 & -5 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -6 \\ 1 & 0 & 8 \end{bmatrix}$$

 $2\pi 3 \qquad 2 \times 3 \qquad 2 \times 3$

<u>Scalar multiplication</u> means multiplying a matrix by a constant

- We do this by multiplying each entry by the constant

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A + B = B + Ab. (A + B) + C = A + (B + C)c. A + 0 = Ad. r(A + B) = rA + rBe. (r + s)A = rA + sAc. A + 0 = A

f. r(sA) = (rs)A

Ex. Let
$$A = \begin{bmatrix} 2 & 2 & 4 \\ -3 & 0 & -1 \\ 2 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 0 \\ 1 & -4 & 3 \\ -1 & 3 & 2 \end{bmatrix}$

a.
$$3A = \begin{bmatrix} 6 & 6 & 12 \\ -9 & 0 & -3 \\ 6 & 3 & 6 \end{bmatrix}$$

b. 3*A* – *B*

When multiplying two matrices, we take a row from the first matrix and multiply it by a column from the second matrix

The orders have to match up:

$$\underset{4\times 3}{A} \times \underset{3\times 7}{B} = \underset{4\times 7}{AB}$$

$$\underline{\text{Ex.}} \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & -2 \end{bmatrix} \times \begin{bmatrix} -2 & 4 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 7 \\ -3 & 6 \end{bmatrix}$$
$$\underbrace{\textbf{z} \times \underline{3}} \underbrace{\textbf{z} \times \textbf{z}} \underbrace{\textbf{z} \times \textbf{z}}$$

(1)(-2) + (0)(1) + (3)(-1) = -5 (1)(4) + (0)(0) + (3)(1) = 7 (2)(-2) + (-1)(1) + (-2)(-1) = -3(2)(4) + (-1)(0) + (-2)(1) = 6

$$\underline{\text{Ex.}} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} -3 & 1 & 6 \\ 4 & 8 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 17 & 12 \\ 7 & 35 & 30 \end{bmatrix}$$
$$2 \times \frac{2}{7} = \begin{bmatrix} 2 \times 3 & 2 \times 3 \\ 7 & 3 & 5 \end{bmatrix}$$

•

. .

Let A be an $m \times n$ matrix, a	and let B	and C	have	sizes	for	which	the	indicated
sums and products are define	d.							

	a. $A(BC) = (AB)C$ (association					tive law	of multip	lication)			
	b. $A(B+C) = AB + AC$ (left dist			stributive law)							
	c. $(B+C)A = BA + CA$ (right dis			distributive law)							
	d. $r(AB) = (rA)B = A(rB)$										
		for any sea	alar r								
	e.	$I_m A = A$	$= AI_n$		(identity	for mat	ri x multip	lication)			
		mkn	mxq								
ł	4	B	1				B	A	11	7.2	
Z X	3	3x2		2 x [°]	2		3x2	<u>2</u> ×3		382	
f	7	ß	-	7 ~ 2			B	A 2x2	=	7 7 · ·	
21	x1	27)		レヘノ			2 3	_			

 $\overline{}$

$$\underline{\text{Ex.}} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} -3 & 1 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 17 \\ 7 & 35 \end{bmatrix}$$

$$2 \times 2 \quad 2 \times 2 \quad 2 \times 2$$

$$\underline{\text{Ex.}} \begin{bmatrix} -3 & 1 \\ 4 & 8 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 28 & 4\theta \end{bmatrix}$$

$$2 \times 2 \qquad 2 \times 2 \qquad 2 \times 2$$

Cautions

- i. In general, $AB \neq BA$. If fact, depending on the sizes, both products may not be possible.
- ii. Cancellation laws do not hold. In other words, if AB = AC, it may not be true that B = C.
- iii. If AB = 0, it may not be true that A = 0 or B = 0.

 $\rightarrow A^{\mathrm{T}}$ (transpose) switches a_{ij} with a_{ji}

Ex. Find the transpose of each matrix:

a.
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 6 \\ -6 & 10 & -5 \end{bmatrix}$$
 $A^{T} = \begin{bmatrix} 2 & 0 & -6 \\ -1 & 4 & 10 \\ 3 & 6 & -5 \end{bmatrix}$
b. $B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}$ $B^{T} = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}$
c. $C = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & -2 \end{bmatrix}$

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a. $(A^{T})^{T} = A$ b. $(A + B)^{T} = A^{T} + B^{T}$ c. For any scalar r, $(rA)^{T} = rA^{T}$ d. $(AB)^{T} = B^{T}A^{T}$

$$\begin{pmatrix} A B \\ 4_{x3} & 3_{x7} \end{pmatrix}^{T} = 7x9$$

Inverse Matrices

2 and $\frac{1}{2}$ are multiplicative inverses because

$$2 \times \frac{1}{2} = 1 \longrightarrow 2^{-1}$$

The <u>inverse</u> of matrix A is written A^{-1} , and

$$AA^{-1} = I$$
 and $A^{-1}A = I$

where *I* is the identity matrix

If a matrix has an inverse, we say that it is <u>invertible</u>

- Otherwise, we say that it is <u>singular</u>
- Only square matrices can be invertible

 $\frac{\text{Ex. Show that }}{\text{are inverses}} A = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$ $A B = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =$

•

For a 2×2 matrix, there's a quick way to find the inverse:

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

The quantity ad - bc is called the <u>determinant</u> of the matrix:

$$\det A = ad - bc$$

We'll come back to this in the future...

Ex. Find the inverse

a.
$$A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$
 $A^{-1} = \frac{1}{6-2} \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{4} \end{bmatrix}$

To solve the equation ax = b, we multiply by the multiplicative inverse $\frac{1}{a}$:

$$ax = b$$

$$\frac{1}{a}ax = \frac{1}{a}b$$

$$x = \frac{b}{a}$$

To solve a matrix equation, we do the same

$$A\mathbf{x} = \mathbf{b}$$
$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$
$$\mathbf{x} = A^{-1}\mathbf{b}$$

Ex. Solve the system

$$\begin{cases} 3x_{1} + 4x_{2} = -2 \\ 5x_{1} + 3x_{2} = 4 \\ \begin{bmatrix} 3 & 4 \\ 5 & 3 \end{bmatrix} \overrightarrow{x} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \\ \overrightarrow{x} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \\ \overrightarrow{x} = A^{-1} \overrightarrow{b} \\ = \frac{1}{-11} \begin{bmatrix} -3 & -4 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \end{bmatrix} \\ = \frac{1}{-11} \begin{bmatrix} -22 \\ 22 \end{bmatrix} \\ = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Thm. "B i. $(A^{-1})^{-1} = A$ ii. $(AB)^{-1} = B^{-1}A^{-1}$ iii. $(AB)^{-1} = B^{-1}A^{-1}$ iii. $(AB)^{-1} = (A^{-1})^T$ $(B^{-1}A^{-1})^T = (B^{-1}A^{-1})^T$ $(B^{-1}A^{-1})^T = (B^{-1}A^{-1})^T$ Let's prove these results. $(A^{-1})^T D = (A^{-1})^T A^T = (AA^{-1})^T$ $=T^{T}=I$

For larger matrices, to find an inverse matrix we use row operations

- Create the matrix [A | I]
- Perform row operations to make the left side into *I*
- The result will be $[I | A^{-1}]$

$$\underbrace{\operatorname{Ex. Find the inverse of } A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}} \\
\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 \\ 6 & -2 & -3 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & -1 & | & 0 \\ 0 & 4 & -3 \\ -6 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & -1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 & -4 & 1 \\ 0 & 0 & 1 \\ -2 & -4 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 & -4 & 1 \\ 0 & 0 & 1 \\ -2 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & -3 & 1 \\ -3 & -3 & 1 \\ -2 & -4 & 1 \end{bmatrix}$$

Thm. Invertible Matrix Theorem

Let A be $n \times n$. The following are equivalent:

- i. *A* is invertible
- ii. A is row equivalent to I.
- iii. A has *n* pivot positions (one in each row and column).
- iv. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- v. The columns of *A* are linearly independent.
- vi. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- vii. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for all **b**.

viii. The columns of A span \mathbb{R}^n .

ix. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .

Ex. Determine if A is invertible.

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

$$\begin{cases} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix} \implies \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

$$p_{ivot} in every$$
row and column
$$\therefore A is inv.$$

Matrices A and B are inverses if AB = I and BA = I.

\rightarrow Transformations *T* and *S* are inverses if

 $T(S(\mathbf{x})) = \mathbf{x}$ and $S(T(\mathbf{x})) = \mathbf{x}$

In fact, if *A* is the standard matrix for *T*, then A^{-1} is the standard matrix for T^{-1} .