Properties of Determinants

Ex. Find the determinant
a. $\left|\begin{array}{ll}1 & X^{\lambda} \\ 2 & x_{-6}\end{array}\right|$
b. $\left|\begin{array}{ll}2 & x_{3}^{-6} \\ 1 & \\ 2\end{array}\right|$
$-6-4$

$$
4--6
$$

$$
-10
$$

$$
10
$$

If two rows are interchanged, the determinant changes signs.

Ex. Find the determinant
a. $\left|\begin{array}{ll}1 & X_{8}^{2} \\ 2 & \\ 2_{-6}\end{array}\right|$
b. $\left|\begin{array}{ll}1 & x_{2}^{2} \\ 1 & -3\end{array}\right|$
$-6-4$

$$
-10
$$

$$
\begin{gathered}
-3-2 \\
-5
\end{gathered}
$$

If a row is multiplied by a scalar, the determinant is multiplied by the scalar (factor out of row).

Ex. Find the determinant
a. $\left|\begin{array}{ll}1 & \\ 2 & X_{3} \\ 2 & -6\end{array}\right|$

$$
\overrightarrow{R_{2} \rightarrow-2 R_{1}+R_{2}} \text { b. }\left|\begin{array}{ll}
1 & x_{2}^{2} \\
0 & -10
\end{array}\right|
$$

$-6-4$

$$
\begin{gathered}
-10-0 \\
-10
\end{gathered}
$$

If a row is replaced by its sum with a multiple of another row, the determinant doesn't change.

Ex. Find the determinant
a. $\left|\begin{array}{l}1 \\ 2\end{array} X_{-6}^{3}\right|$
$-6-6$
-12
b. $\left|\begin{array}{ll}1 & \\ 3 & x_{3} \\ 3 & -6\end{array}\right|$
$-6-6$
-12
$\operatorname{det} A^{\mathrm{T}}=\operatorname{det} A$
[These properties also work when doing column operations.]
We can make determinants ease to evaluate by using row operations (especially 4×4).
Ex. Find the determinant of $A=\left[\begin{array}{ccc}-2 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 4\end{array}\right]$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
-2 & 2 & 3 \\
1 & -1 & 0 \\
0 & 1 & 4
\end{array}\right| \xrightarrow{R_{1} \leftrightarrow R_{2}}-\left|\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 2 & 3 \\
0 & 1 & 4
\end{array}\right| \xrightarrow{R_{2} \rightarrow R_{2}+2 R_{1}}\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 3 \\
0 & 1 & 4
\end{array}\right| \\
& \stackrel{R_{2} \leftrightarrows R_{3}}{=}\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 4 \\
0 & 0 & (3)
\end{array}\right|=(1)(1)(3)=3
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{array}\right| \\
& \left.=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & -3 & 2
\end{array}\right| \begin{array}{cccc}
1 & -4 & 3 & 4 \\
R_{4} \rightarrow R_{4}+\frac{-1}{2} R_{3} & 2 & & \\
R_{3} \rightarrow R_{3}+4 R_{2} & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & 1
\end{array} \right\rvert\,=2(1)(3)(-6)(1) \\
& =-36
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. Find the determinant of } A=\left[\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 3 & 4
\end{array}\right] \\
& \left|\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 3 & 4
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 3 & 4
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & 0 & 0
\end{array}\right| \\
& \\
& =2\left|\begin{array}{ccc}
1 & \vdots \\
8 & 3 & -6 \\
0 & 0 & -6 \\
0
\end{array}\right|=2(1)(3)(-6)(0) \\
& \\
& =0
\end{aligned}
$$

A square matrix is invertible (and everything that goes with that) iff the determinant is non-zero.

Thm. Invertible Matrix Theorem
Let A be $n \times n$. The following are equivalent:
i. A is invertible
ii. A is row equivalent to I.
iii. A has n pivot positions (one in each row and column).
iv. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
v. The columns of A are linearly independent.
vi. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
vii. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}.
viii. The columns of A span \mathbb{R}^{n}.
ix. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
x. The determinant of A is not zero

Ex. Verify that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$

$$
\operatorname{det} A=12-3=9 \quad \operatorname{det} B=8-3=5
$$

$\begin{aligned} A B=\left[\begin{array}{ll}25 & x_{2}^{20} \\ 14\end{array}\right] \rightarrow & \operatorname{det}(A B)=325-280=45 \\ & (\operatorname{det} A)(\operatorname{det} B)=\operatorname{det}(A B)\end{aligned}$

Caution: $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$

Ex. Compute get $\left(B^{3}\right)$

$$
B=\left[\begin{array}{ll}
4 & \\
X^{3} & 3 \\
1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}\left(B^{3}\right) & =\operatorname{det}(B \cdot B \cdot B) \\
& =(\operatorname{det} B)(\operatorname{det} B)(\operatorname{det} B) \\
& =(\operatorname{det} B)^{3} \\
& =(8-3)^{3} \\
& =5^{3}=125
\end{aligned}
$$

Ex. Evaluate jet

$$
\begin{aligned}
& 3(4)(-1)^{1+1}\left|\begin{array}{ll}
2 & 6 \\
1 & 1
\end{array}\right| \\
& 12(2-6) \\
& -48
\end{aligned}
$$

Applications of Determinants

It is possible to solve a system of equations by finding a bunch of determinants:

Cramer's Rule
Consider the problem of solving $A \mathbf{x}=\mathbf{b}$. Let $A_{1}(\mathbf{b})$ be the matrix obtained from A by replacing column 1 with \mathbf{b}. Then

$$
x_{1}=\frac{\operatorname{det} A_{1}(\mathbf{b})}{\operatorname{det} A}
$$

This process can be repeated to solve for the other variables.

Ex. Solve $\left\{\begin{array}{l}4 x_{1}-2 x_{2}=10 \\ 3 x_{1}-5 x_{2}=11\end{array}\right.$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
4 & -2 \\
3 & -5
\end{array}\right] \quad \vec{b}=\left[\begin{array}{c}
10 \\
11
\end{array}\right] \quad \vec{x}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
\operatorname{det} A=-20--6=-14 \\
A_{1}(\vec{b})=\left[\begin{array}{ll}
10 & -2 \\
11 & -5
\end{array}\right] \quad \operatorname{det} A_{1}(\vec{b})=-50--22=-28 \rightarrow x_{1}=\frac{-28}{-14}=2 \\
A_{2}(\vec{b})=\left[\begin{array}{ll}
4 & 10 \\
3 & 11
\end{array}\right] \quad \operatorname{det} A_{2}(\vec{b})=44-30=14 \rightarrow x_{2}=\frac{14}{-14}=-1
\end{gathered}
$$

Generally, it's quicker to do row reduction.

Thm. Let A be $n \times n$ and let $C_{i j}$ be the cofactor for entry $a_{i j}$. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{\mathrm{T}}
$$

C^{T} is called the adjugate (or classical adjoint) or A, and can be denoted adj A.

Generally, it's quicker to use the other method for finding A^{-1}.

Ex. Let $A=\left(\begin{array}{ccc}2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1\end{array}\right)$, find A^{-1}.

Thm. If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$.
If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.

Ex. Find the area of the parallelogram with vertices $(-2,-2)$, $(0,3),(4,-1)$, and $(6,4)$.

$$
\begin{aligned}
\left|\begin{array}{ll}
2 & 6 \\
5 & 1
\end{array}\right| & =2-30=-28 \\
A & =28
\end{aligned}
$$

Ex. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,3,0),(-2,0,2)$,

$$
\begin{gathered}
\text { and (-1,3,-1). } \left.\begin{array}{c}
\downarrow \\
{\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right]}
\end{array} \begin{array}{c}
\downarrow \\
1 \\
3 \\
0
\end{array}\right]\left[\begin{array}{cc}
-2 \\
0 \\
2
\end{array}\right] \\
\left|\begin{array}{rrr}
1 & -2 & -1 \\
3 & 0 & 3 \\
0 & 2 & -1
\end{array}\right|=\left|\begin{array}{ccc}
1 & -2 & -1 \\
0 & 6 & 6 \\
0 & 2 & -1
\end{array}\right|=6\left|\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 2 & -1
\end{array}\right|=6\left|\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 0 & -3
\end{array}\right| \\
\\
=6(1)(1)(-3)=-18
\end{gathered}
$$

Vector Spaces

We are going to start working with some abstract sets called vector spaces.

- Although everything we discuss can apply to vectors in \mathbb{R}^{2} and \mathbb{R}^{3}, we will also be more general
- On the next slide, \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in vector space V and c and d can be any real number.

Def. A vector space contains objects (called vectors) on which are defined two operations, addition and scalar multiplication, which are subject to 10 axioms (rules):

1) Closed under addition $\rightarrow \mathbf{u}+\mathbf{v}$ is in V
2) Closed under scalar multiplication $\rightarrow c \mathbf{u}$ is in V
3) Addition is commutative $\rightarrow \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
4) Addition is associative $\rightarrow(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
5) Zero vector \rightarrow There is $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
6) Opposite vector \rightarrow There is $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
7) Distributive $\rightarrow c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8) Distributive $\rightarrow(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9) Scalar multiplication is associative $\rightarrow c(d \mathbf{u})=(c d) \mathbf{u}$
10) Scalar multiplication by $1 \rightarrow 1 \mathbf{u}=\mathbf{u}$

Ex. Define S as the space of all doubly infinite sequences of real numbers:

$$
\left\{y_{k}\right\}=\left(K, y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, \ldots\right) \quad x=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

Show that S is a vector space.

1) closed under add.

$$
\begin{aligned}
& \text { closed under add. } \\
& x+y=\left(\ldots, x_{-2}+y_{2}, x_{1}+y_{-1}, x_{0}+y_{0}, x_{1}+y_{1}, y_{2}+y_{2}, \ldots\right) \in
\end{aligned}
$$

2) closed under scalar mult.

$$
c y=\left(\ldots, c y_{-2}, c y_{-1}, c y_{0}, c y_{1}, c y_{2}, \ldots\right) \in S
$$

3) zero $0=(\ldots, 0,0,0,0,0, \ldots) \in S$

Ex. Define \mathbb{P}_{n} as the space of polynomials of degree at most n.

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+K a_{n} t^{n} \quad \vec{q}=b_{0}+b_{1} t+b_{1} t^{2}+\ldots+b_{n} t^{4}
$$

Show that \mathbb{P}_{n} is a vector space.

1) closed under add,

$$
\begin{aligned}
& \text { sed under add } \\
& \vec{p}+\vec{q}=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\left(a_{2}+b_{2}\right) t^{2}+\ldots+\left(a_{n}+b_{n}\right) t^{n} \in \mathbb{P}_{n}
\end{aligned}
$$

2) closed under scalar mull.

$$
c \vec{p}=\left(c a_{0}\right)+\left(c a_{1}\right) t+\left(c a_{2}\right) t^{2}+\ldots+\left(c a_{n}\right) t^{n} \in \mathbb{P}_{n}
$$

3) zero $\overrightarrow{0}=0 \in \mathbb{P}_{n}$

Ex. Define Π_{n} as the space of polynomials of degree n.

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\mathrm{K} a_{n} t^{n}, a_{n} \neq 0
$$

Show that Π_{n} is not a vector space.

$$
\overrightarrow{0}=0 \notin \pi_{n}
$$

Ex. Define \mathcal{F} as the space of real valued functions. Show that \mathcal{F} is a vector space.

Ex. Define \mathbb{Z}^{2} as the space of vectors in \mathbb{R}^{2} with integer elements.
$\left[\begin{array}{l}a \\ b\end{array}\right]$, where a and b are integers
Show that \mathbb{Z}^{2} is not a vector space.

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
a+c \\
d+b
\end{array}\right] \in \mathbb{Z}^{2} \quad \text { closed under add. . }
$$

$\left[\begin{array}{l}0 \\ 0\end{array}\right] \in \mathbb{Z}^{2} \quad$ zero vector

$$
c\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
c & a \\
c & b
\end{array}\right] \notin \mathbb{Z}^{2} \quad \text { closed under scalar multi. }
$$

Def. A subspace of a vector space V is a subset H of V that satisfies 3 rules:

1) H is closed under addition \rightarrow If \mathbf{u} and \mathbf{v} are in H, then $\mathbf{u}+\mathbf{v}$ is in H.
2) H is closed under scalar multiplication \rightarrow If \mathbf{u} is in H, then $c \mathbf{u}$ is in H
3) Zero vector \rightarrow The zero vector of V is in H.

Every subspace is a vector space in its own right. However, since it is a subset of an already-established vector space, not all axioms need to be verified.
$\rightarrow \mathbb{P}_{n}$ is a subspace of \mathcal{F}.
$\rightarrow \mathbb{Z}^{2}$ is not a subspace of \mathbb{R}^{2}

Ex. \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}. However, consider the set that looks and acts like \mathbb{R}^{2}.

$$
H=\left\{\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right]: a, b \text { are real }\right\} \quad \vec{u}=\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
p \\
q \\
0
\end{array}\right]
$$

Show that H is a subspace of \mathbb{R}^{3}.

$$
\text { closed under add: } \vec{u}+\vec{v}=\left[\begin{array}{c}
a+p \\
b+q \\
0
\end{array}\right] \in H
$$

closed under scalar mut.: $c \vec{u}=\left[\begin{array}{c}c \\ c \\ c \\ 0\end{array}\right] \in H$ zero: $\overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in H$

Ex. Consider the zero subspace, consisting only of the zero vector of a vector space V.

$$
\{\mathbf{0}\}
$$

Show that this is a subspace of V.

$$
\begin{gathered}
\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \\
c \overrightarrow{0}=\overrightarrow{0} \\
\overrightarrow{0}
\end{gathered}
$$

Ex. Let \mathbf{v}_{1} and \mathbf{v}_{2} be vectors in a vector space V, show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a subspace of V.

$$
H=\left\{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\right\} \quad \begin{aligned}
& \vec{p}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \\
& \vec{q}=d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}
\end{aligned}
$$

addition: $\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)+\left(d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}\right)$

$$
=\left(c_{1}+d_{1}\right) \overrightarrow{v_{1}}+\left(c_{2}+d_{2}\right) \overrightarrow{v_{2}} \in H
$$

scalar malt. $a\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=\left(a c_{1}\right) \vec{v}_{1}+\left(a c_{2}\right) \overrightarrow{v_{2}} \in H$
zero $\overrightarrow{0}=0 \vec{v}_{1}+0 \vec{v}_{2} \in H$

- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are in a vector space V, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is called the subspace spanned by the vectors.
- Given any subspace H, a spanning set for H is a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ such that $\mathrm{H}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$
- Consider \mathbb{P}_{n} as a subspace of \mathcal{F}. The set $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a spanning set for \mathbb{P}_{n}.

Ex. Consider the set of vectors

$$
\begin{aligned}
& H=\left\{\left[\begin{array}{c}
a-3 b \\
b-a \\
a \\
b
\end{array}\right]: a, b \text { are real }\right\}=\left\{\left[\begin{array}{c}
a \\
-a \\
a \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 b \\
b \\
0 \\
b
\end{array}\right]\right\} \\
& \text { t } H \text { is a subspace of } \mathbb{R}^{4} .
\end{aligned}
$$

Show that H is a subspace of \mathbb{R}^{4}.
H is a span, so it
is a subspace

$$
\begin{aligned}
& =\left\{a\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right]\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{r}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

