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EX. Solve the equation Ax =0 for A=| 1
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The set of solutions to this system form a subspace
because this set is the span of the vectors.

Def. The null space of matrix A, written Nul A, Is
the set of solutions to the homogeneous equation
Ax = 0.

{x:Ax =0}

Note that this only works for the homogeneous
equation.

- The solution set for Ax = b doesn’t include the
Zero vector.

-> Also, AX = b may have no solution
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Another description:

Consider the linear transformation x — Ax,

Nul A is the set of all vectors that are mapped
to the zero vector.




There’s no obvious relation between the entries of
A and the vectors in Nul A (or its spanning set).

Another subspace, which has a more obvious
connection, Is the column space of A.

Def. The column space of A, written Col A, Is the
subspace that is the span of the columns of A.

| o[

\\

"



IfA=[a, a, ... a,],avector bisinCol Aif
b=xa,+xa,+...+Xa,

{b : Ax = b}
For the linear transformation x — Ax, Col A Is the
range.



Ex. Find a matrlx A such that W = Col A.
([6a—b’
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EX. Consider the 3 X 4 matrix A.

a. Col A is a subspace of R* for what value of k?
b. Nul A is a subspace of R for what value of k?
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the column space of A.
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EXx. For Az{ } , find a nonzero vector in Col A

-5 9 1

and a nonzero vector in Nul A.
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Nul A and Col A are quite different, though we will find a
connection between them next class.

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A

Col A

1. Nul 4 is a subspace of R".

. Nul A 1s implieitly defined: that 1s, you are
given only a condition (Ax = 0) that vec-
tors 1n Nul A must satisfy.

. It takes time to find vectors in Nul 4. Row
operationson [ A 0] are required.

. There 15 no obvious relation between WNul 4
and the entries in A.

. A typical vector vin Nul A has the property
that Av = 0.

. Given a specific vector v, 1t 1s easy to tell if
v 1s 10 Nul 4. Just compute Av.

. Nul A = {0} if and only if the equation

Ax = 0 has only the trivial solution.

. Nul 4 = {0} if and only if the linear trans-
formation x ~— Ax is one-to-one.

1. Col A is a subspace of R™.

2. Col A 1s explicitly defined; that 1s, you are

told how to build vectors 1n Col A.

It 1s easy to find vectors in Col 4. The
columns of A are displayed; others are
formed from them.

There 1s an obvious relation between Col A
and the entries in A, since each column of
A1s1n Col A.

A typical vector v in Col A has the property
that the equation Ax = v 1s consistent.
Given a specific vector v, it may take time
to tell if v 1z m Col A. Row operations on
[A v] are required.

Col A = R"™ if and only if the equation

Ax = b has a solution for every b in E™.
Col 4 = B™ if and only if the linear trans-
formation x + Ax maps " onte R™.




When considering more abstract vector spaces, we
discuss the linear transformation rather than the
matrix.

Def. A linear transformation T from a vector space
V to a vector space W is a rule that assigns to each
vector X In V a unique vector T(x) in W, such that

. T(u+v)=T(U)+T(v)
1. T(cu)=cT(u)




The kernel of T Is the subspace of V that Is
mapped to the zero vector in W.

=2 If T 1s a matrix transformation, this is the null
space.

The range of T Is the subspace of W of all vectors
of the form T(x) for some x in V.

- If T 1s a matrix transformation, this is the
column space.



EX. An example of an abstract linear transformation
would be the derivative.

We can use C[a,b], which is the set of all continuous

functions on the interval [a,b].
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Ex. Define the linear transformation T: P, — R?

| p(0) :
by T(p) _LO'(OJ . Find the kernel of T. L
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Linear Independence

A set of vectors vy, vy, ..., v, Is linearly dependent if there
exist constants cq, C,, ..., C, (not all zero) such that

C1Vy + CVp + ...+ ¢V =0

-> This equation is called a linear dependence relation.

—> If the set Is dependent, one of the vectors can be written
as the linear combination of the others.

— The set is linearly independent if ¢; =c,=...=¢c,=01Is
the only solution.

- When we saw this before, the vectors were in R™ and we
looked at the equation Ax = 0.

—> For abstract vector spaces, we can’t rely on that.



Ex. In P, determine if p,(t) = 1, p,(t) =t, p5(t) = 2,
and p, = 4+3)° are linearly dependent.
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EX. In C[0,1], determine if {cos t, sin t} is linearly
dependent.

0ttt 0 sif=0
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Ex. In C[0,1], show that {cos t, sin t, sin(t + =)} is
linearly dependent. ViV, V3
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Def. Let H be a subspace of a vector space V. A set of
vectors B In V is a basis of H if

I.  The vectors in B are linearly independent
Il. The vectors in B span H.

This could be considered the most “efficient” way to
define the subspace H.



Ex. Determine if v,=| 0 |,v,=| 1 |,andv,=| 1 |form

a basis for R3. _6
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The columns of |, are called the standard basis for R™.

In R3, the standard basis vectors are
(1 ] 0 0 5
e,=/0],e,=|1|,ande,=|0

Theset S={1,t,t5..., t"}is called the standard basis for PP,,.
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EX. The vectors are dependent. If H = span {v,,v,,Vs},

identify a basis for H. 1

1=l
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A basis Is a spanning set that is as small as possible.




Ex. Let H = span{1, t, t2, ()7}, find a basis.

N o——

Ex. LetH = span{M}, find a basis.

EXx. Let H = span{cos t, sin t, M}, find a basis.



We previously found vectors that span the null space of

a matrix A = this will be the basis of Nul A.

Ex. Find a basis for Nul B, where |1 4 0
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It turns out that the pivot columns of a matrix form a
basis for the column space of the matrix.

Ex. Find a basis for Col A, where Q 4 0 2 -1
[This is row equiv. to B.] a_|d 12 @ 5 5
2 8 13 (2
1 7(°¢ *’}l 520 2 8 8
Laf;ﬁ ‘ﬁr Co’A"" g | 2
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Be careful to use the columns of A, not the reduced form
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