$\operatorname{ppar}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ Some Subspaces
Ex. Solve the equation $A \mathbf{x}=\mathbf{0}$ for $A=\left[\begin{array}{ccccc}-3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
-3 & 6 & -1 & 1 & -7 & 0 \\
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{ccccc|c}
1 & -2 & 2 & 3 & -1 & 0 \\
-3 & 6 & -1 & 1 & -7 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{ccccc|c}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 5 & 10 & -10 & 0 \\
0 & 0 & 1 & 2 & -2 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc|c}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & -1 & 3 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
x_{1}-2 x_{2}-x_{4}+3 x_{5}=0
\end{array}\right] \\
& \Rightarrow \begin{array}{l}
x_{1}-2 x_{2}-x_{4}+3 x_{5}=0 \\
x_{3}+2 x_{4}-2 x_{5}=0
\end{array} \Rightarrow \begin{array}{l}
x_{1}=2 x_{2} \\
x_{2}=x_{2} \\
x_{3}=2 x_{1}
\end{array} \\
& \begin{array}{l}
x_{3}=-2 x_{4}+2 x_{5} \\
x_{4}=x_{4} \\
x_{5}=x_{5}
\end{array} \Rightarrow \vec{X}=\left[\begin{array}{l}
2 x_{2}+x_{4}-3 x_{5} \\
x_{2} \\
-2 x_{4}+2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
\vec{v}_{1}
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
0 \\
-2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
{\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1 \\
\vec{v}_{3}
\end{array}\right]} \\
\hline
\end{array}\right.
\end{aligned}
$$

The set of solutions to this system form a subspace because this set is the span of the vectors.
Def. The null space of matrix A, written $\operatorname{Nul} A$, is the set of solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

$$
\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}
$$

Note that this only works for the homogeneous equation.
\rightarrow The solution set for $A \mathbf{x}=\mathbf{b}$ doesn't include the zero vector.
\rightarrow Also, $A \mathbf{x}=\mathbf{b}$ may have no solution

Ex. For $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, determine if $\mathbf{u}=\left[\begin{array}{c}5 \\ 3 \\ -2\end{array}\right]$ is in the null space of A.
If $\vec{u} \in N_{u} \mid A \Rightarrow A \vec{u}=\overrightarrow{0}$

$$
\begin{gathered}
A \vec{u}=\left[\begin{array}{ccc}
1 & -3 & -2 \\
-5 & 9 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\therefore \vec{u} \in N_{u} \mid A
\end{gathered}
$$

Another description:

Consider the linear transformation $\mathbf{x} \longmapsto A \mathbf{x}$, $\operatorname{Nul} A$ is the set of all vectors that are mapped to the zero vector.

There's no obvious relation between the entries of A and the vectors in $\operatorname{Nul} A$ (or its spanning set).

Another subspace, which has a more obvious connection, is the column space of A.

Def. The column space of A, written $\operatorname{Col} A$, is the subspace that is the span of the columns of A.

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 7 \\
9 & 6
\end{array}\right]
$$

$$
\text { wA= } \operatorname{sp}\left\{\left[[7]\left[\left[\begin{array}{l}
{[0]}
\end{array}\right]\right\}\right.\right.
$$

If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right]$, a vector \mathbf{b} is in $\operatorname{Col} A$ if $\mathbf{b}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}$

$$
\{\mathbf{b}: A \mathbf{x}=\mathbf{b}\}
$$

For the linear transformation $\mathbf{x} \longmapsto A \mathbf{x}, \operatorname{Col} A$ is the range.

Ex. Find a matrix A such that $W=\operatorname{Col} A$.

$$
\begin{aligned}
W & =\left\{\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right]: a \text { and } b \text { are real numbers }\right\} \\
& =\left\{\left[\begin{array}{c}
6 a \\
a \\
-7 a
\end{array}\right]+\left[\begin{array}{c}
-b \\
b \\
0
\end{array}\right]\right\} \\
& =\left\{a\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\} \\
& =\operatorname{ppar}\left\{\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

Ex. Consider the 3×4 matrix A.
a. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k} for what value of k ?
b. $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k} for what value of k ?

$$
\begin{aligned}
& \operatorname{col} A=\{\vec{b}: A \vec{x}=\vec{b}\} \subseteq \mathbb{R}^{3} \\
& \text { Mol } A=\left\{\begin{array}{l}
\vec{x}: A \vec{x}=\overrightarrow{0} \\
3 \times 4 \times 1
\end{array}\right\} \subseteq \mathbb{R}^{4}
\end{aligned}
$$

Ex. For $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, determine if $\mathbf{u}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$ is in the column space of A.

$$
\begin{aligned}
& \vec{x} \rightarrow \vec{u} \\
& A \vec{x}=\vec{u} \\
& {\left[\begin{array}{ccc|c}
1 & -3 & -2 & 5 \\
-5 & 9 & 1 & 3
\end{array}\right]}
\end{aligned} \rightarrow\left[\begin{array}{ccc|c}
0 & -3 & -2 & 5 \\
0 & -6 & -9 & 28
\end{array}\right] . \begin{aligned}
& \text { consist. } \\
& \\
& \quad \therefore \vec{u} \in \operatorname{col} A
\end{aligned}
$$

Ex. For $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, find a nonzero vector in $\operatorname{Col} A$ and a nonzero vector in $\operatorname{Nul} A$.

$$
\begin{aligned}
& A \vec{x}=\overrightarrow{0} \\
& {\left[\begin{array}{ccc|c}
1 & -3 & -2 & 0 \\
-5 & 9 & 1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{lll|l}
1 & -3 & -2 & 0 \\
0 & -6 & -9 & 0
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{ccc|c}
1 & -3 & -2 & 0 \\
0 & 1 & 3 / 2 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{lll|l}
1 & 0 & 5 / 2 & 0 \\
0 & 1 & 3 / 2 & 0
\end{array}\right] \\
& \Rightarrow \begin{array}{l}
x_{1}+\frac{5}{2} x_{3}=0 \\
x_{2}+\frac{3}{2} x_{3}=0
\end{array} \Rightarrow \begin{array}{l}
x_{1}=-\frac{5}{2} x_{3} \\
x_{2}=-\frac{3}{2} x_{3} \\
x_{3}=x_{3}
\end{array} \xrightarrow{x_{3}=2} \vec{x}=\left[\begin{array}{c}
-5 \\
-3 \\
2
\end{array}\right] \\
& x_{3}=x_{3}
\end{aligned}
$$

$\operatorname{Nul} A$ and $\operatorname{Col} A$ are quite different, though we will find a connection between them next class.

Contrast Between Nul A and $\operatorname{Col} A$ for an $m \times n$ Matrix A

$\mathrm{Nu} 1 A$	$\mathrm{Col} A$
1. $\mathrm{Nul} A$ is a subspace of \mathbb{R}^{n}.	1. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
2. $\mathrm{Nul} A$ is implicitly defined; that is, you are given only a condition $(A x=0)$ that vectors in Nul A must satisfy.	2. $\mathrm{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
3. It takes time to find vectors in $\operatorname{Nul} A$. Row operations on $\left[\begin{array}{ll}A & 0\end{array}\right]$ are required.	3. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.	4. There is an obvious relation between $\operatorname{Col} A$ and the entries in A, since each column of A is in $\operatorname{Col} A$.
5. A typical vector \mathbf{v} in $\mathrm{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.	5. A typical vector \mathbf{v} in $\operatorname{Col} A$ has the property that the equation $A \mathbf{x}=\mathbf{v}$ is consistent.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in $\operatorname{Nul} A$. Just compute $A \mathbf{v}$.	6. Given a specific vector v, it may take time to tell if \mathbf{v} is in $\operatorname{Col} A$. Row operations on $\left[\begin{array}{ll}A & \mathbf{v}\end{array}\right]$ are required.
7. $\operatorname{Nul} A=\{0\}$ if and only if the equation $A \mathbf{x}=0$ has only the trivial solution.	7. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.
8. $\operatorname{Nul} A=\{0\}$ if and only if the linear transformation $\mathrm{x} \mapsto A \mathbf{x}$ is one-to-one.	8. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

When considering more abstract vector spaces, we discuss the linear transformation rather than the matrix.

Def. A linear transformation T from a vector space V to a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that
i. $\quad T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
ii. $\quad T(c \mathbf{u})=c T(\mathbf{u})$

The kernel of T is the subspace of V that is mapped to the zero vector in W.
\rightarrow If T is a matrix transformation, this is the null space.
The range of T is the subspace of W of all vectors of the form $T(\mathbf{x})$ for some \mathbf{x} in V.
\rightarrow If T is a matrix transformation, this is the column space.

Ex. An example of an abstract linear transformation would be the derivative.

We can use $C[a, b]$, which is the set of all continuous functions on the interval $[a, b]$.

$$
x^{7} \longrightarrow 7 x^{6}
$$

Kernal T : All functions that map to 0 .

$$
\text { Kernal }=\{\text { constants }\}
$$

Ex. Define the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$
by $T(\mathbf{p})=\left[\begin{array}{l}\mathbf{p}(0) \\ \mathbf{p}^{\prime}(0)\end{array}\right]$. Find the kernel of T.

$$
\mathbb{P}_{2}=\left\{a+b t+c t^{2}\right\} \quad \begin{aligned}
& \vec{p}(t)=a+b t+c t^{2} \\
& \vec{p}^{\prime}(t)=b+2 c t
\end{aligned}
$$

$T(\vec{p})=\left[\begin{array}{l}a \\ b\end{array}\right] \quad$ Vernal is all vectors that mop to $\overrightarrow{0}$

$$
\begin{aligned}
& \text { to } \overrightarrow{0} \\
& \Longrightarrow T(\vec{p})=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow a=0, b=0 \\
& \text { Kernal }=\left\{c t^{2}\right\}=\operatorname{span}\left\{t^{2}\right\}
\end{aligned}
$$

Linear Independence

A set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ is linearly dependent if there exist constants $c_{1}, c_{2}, \ldots, c_{p}$ (not all zero) such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

\rightarrow This equation is called a linear dependence relation.
\rightarrow If the set is dependent, one of the vectors can be written as the linear combination of the others.
\rightarrow The set is linearly independent if $c_{1}=c_{2}=\ldots=c_{p}=0$ is the only solution.
\rightarrow When we saw this before, the vectors were in \mathbb{R}^{n} and we looked at the equation $A \mathbf{x}=\mathbf{0}$.
\rightarrow For abstract vector spaces, we can't rely on that.

Ex. In \mathbb{P}, determine if $\mathbf{p}_{1}(t)=1, \mathbf{p}_{2}(t)=t, \mathbf{p}_{3}(t)=t^{2}$, and $\mathbf{p}_{4}=\frac{(5)^{2}}{t^{2}+(t+9}$ are linearly dependent.

$$
-91+-6 t+-1 t^{2}+1\left(t^{2}+6 t+9\right)=0
$$

coefficients exist, so vectors are lin. dep.

Ex. In $C[0,1]$, determine if $\{\cos t, \sin t\}$ is linearly dependent.

$$
\begin{array}{r}
0 \cos t+\underline{0} \sin t=0 \\
\text { lin. indef. }
\end{array}
$$

Ex. In $C[0,1]$, show that $\left\{\cos t, \sin t, \sin \left(t+\frac{\pi}{4}\right)\right\}$ is linearly dependent. $\quad \vec{v}, \quad \vec{v}_{2} \quad \vec{v}_{3}$

$$
\begin{aligned}
\sin \left(t+\frac{\pi}{4}\right) & =\sin t \cos \frac{\pi}{4}+\cos t \sin \frac{\pi}{4} \\
& =\frac{\sqrt{2}}{2} \sin t+\frac{\sqrt{2}}{2} \cos t \\
\vec{v}_{3} & =\frac{\sqrt{2}}{2} \vec{v}_{1}+\frac{\sqrt{2}}{2} \vec{v}_{2}
\end{aligned}
$$

they are related, so vectors are lin. dep.

Def. Let H be a subspace of a vector space V. A set of vectors \mathcal{B} in V is a basis of H if
i. The vectors in \mathcal{B} are linearly independent
ii. The vectors in \mathcal{B} span H.

This could be considered the most "efficient" way to define the subspace H.

Ex. Determine if $\mathbf{v}_{1}=\left[\begin{array}{c}3 \\ 0 \\ -6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-4 \\ 1 \\ 7\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 5\end{array}\right]$ form

$$
\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

i) rectors span $\mathbb{R}^{3} \longrightarrow$ pivot in every row
$\ddot{\mu})$ vectors are indep. \longrightarrow pivot in every column \checkmark yes, they form a basis

The columns of I_{n} are called the standard basis for \mathbb{R}^{n}.

In \mathbb{R}^{3}, the standard basis vectors are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]
$$

The set $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is called the standard basis for \mathbb{P}_{n}.

$$
3+7 t+4 t^{2}+5 t^{3}
$$

Ex. The vectors are dependent. If $H=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, identify a basis for H.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll}
1 & 4 & 2 \\
2 & 5 & 1 \\
3 & 6 & 0
\end{array}\right]} & \longrightarrow\left[\begin{array}{ccc}
1 & 4 & 2 \\
0 & -3 & -3 \\
0 & -6 & -6
\end{array}\right]
\end{array}>\left[\begin{array}{ccc}
11 & 4 & 2 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right]\right]
$$

A basis is a spanning set that is as small as possible.

Ex. Let $H=\operatorname{span}\{\underbrace{1, t, t^{2}}\}$, find a basis.

Ex. Let $H=\operatorname{span}\{\underbrace{\cos t, \sin t}\}$, find a basis.

Ex. Let $H=\operatorname{span}\{\underbrace{\cos t, \sin t}, ~, ~ s i \frac{\pi}{4}\}$, find a basis.

We previously found vectors that span the null space of a matrix $A \rightarrow$ this will be the basis of $\operatorname{Nul} A$.

$$
\begin{aligned}
& B \vec{x}=\overrightarrow{0} \\
& \begin{array}{c}
\text { Ex. Find a basis for Null } B \text {, where } \\
B \vec{x}=\overrightarrow{0} \\
{\left[\begin{array}{ccc|c}
1 & 4 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{c}
x_{1}+4 x_{2}+2 x_{4}=0 \\
x_{3}-x_{4}=0 \\
x_{5}=0
\end{array} \quad B=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{cc}
-4 x_{2}-2 x_{4}
\end{array}\right]\left[\begin{array}{c}
-4 \\
1
\end{array}\right]\left[\begin{array}{c}
-2 \\
c
\end{array}\right]}
\end{array} \\
& \Rightarrow \begin{array}{l}
x_{1}=-4 x_{2}-2 x_{4} \\
x_{2}=x_{2} \\
x_{3}=x_{4} \\
x_{4}=x_{4}
\end{array} \Rightarrow \vec{x}=\left[\begin{array}{c}
-4 x_{2}-2 x_{4} \\
x_{2} \\
x_{4} \\
x_{4} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-2 \\
c \\
1 \\
1 \\
0
\end{array}\right] \\
& \text { Ex. Find a basis for } \operatorname{Nul} B \text {, where } \\
& x_{4}=x_{y} \\
& x_{s}=0 \\
& \text { basis for bul } A=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1 \\
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

It turns out that the pivot columns of a matrix form a basis for the column space of the matrix.
Ex. Find a basis for $\operatorname{Col} A$, where
[This is row equiv. to B.]

$$
\text { basis for Col } A=\left\{\left[\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
2 \\
8
\end{array}\right]\right\}
$$

$$
A=\left[\begin{array}{ccccc}
(1) & 4 & 0 & 2 & -1 \\
3 & 12 & (1) & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right]
$$

Be careful to use the columns of A, not the reduced form

