Change of Basis

Some problems are easier to work in a different basis.
\rightarrow We need to talk about how to change between bases.

Ex. Consider two bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{h}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ such that $\mathbf{b}_{1}=4 \mathbf{c}_{1}+\mathbf{c}_{2}$ and $\mathbf{b}_{2}=-6 \mathbf{c}_{1}+\mathbf{c}_{2}$. Suppose

$$
\begin{aligned}
& \underbrace{[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]} \text {, find }[\mathbf{x}]_{c} . \quad \longrightarrow\left[\vec{b}_{1}\right]_{c}=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \quad \searrow\left[\begin{array}{l}
\vec{b}_{2}
\end{array}\right]_{c}=\left[\begin{array}{c}
-6 \\
1
\end{array}\right] \\
& \vec{x}=3 \vec{b}_{1}+1 \vec{b}_{2} \\
& =3\left(4 \overrightarrow{c_{1}}+\overrightarrow{c_{2}}\right)+1\left(-6 \overrightarrow{c_{1}}+\overrightarrow{c_{2}}\right) \\
& =(3.4+1(-6)) \overrightarrow{c_{1}}+[(3)(1)+(1)(1)] \vec{c}_{2}\left[\begin{array}{cc}
4 & -6 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \\
& =6 c_{1}+4 c_{2} \quad[\vec{x}]_{c}=\left[\begin{array}{l}
6 \\
4
\end{array}\right]
\end{aligned}
$$

We can notice that $[\mathbf{x}]_{c}$ was equal to the product of a matrix and $[\mathbf{x}]_{\mathcal{B}}$.
Further, we notice that the columns of the matrix were the \mathcal{C} coordinates of the vectors in \mathcal{B}

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathrm{P}}=\left[\begin{array}{llll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & {\left[\mathbf{b}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}
\end{array}\right]
$$

This is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}
\rightarrow To change from \mathcal{C} to \mathcal{B}, we can use the inverse

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{\mathrm{P}}=(\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathrm{P}})^{-1}
$$

In general, we can find the change-of-coordinates matrix by using

$$
\left[\begin{array}{l|l|l}
P_{\mathcal{B}} & P_{\mathcal{C}}
\end{array}\right] \sim\left[\begin{array}{l|l}
I & \underset{\mathcal{B} \leftarrow \mathcal{C}}{\mathrm{P}}
\end{array}\right]
$$

Ex. Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-2 \\ 4\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{c}-7 \\ 9\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}-5 \\ 7\end{array}\right]$ be the vectors of bases \mathcal{B} and \mathcal{C}. Find $\underset{\mathcal{B} \leftarrow \mathcal{C}}{\mathrm{P}}$ and $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathrm{P}}$

$$
\begin{aligned}
& \underset{B \in C}{P}:\left[\begin{array}{cc|cc}
1 & -2 & -7 & -5 \\
-3 & 4 & 9 & 7
\end{array}\right] \Rightarrow\left[\begin{array}{cc|cc}
1 & -2 & -7 & -5 \\
0 & -2 & -12 & -8
\end{array}\right] \Rightarrow\left[\begin{array}{cc|cc}
1 & -2 & -7 & -5 \\
0 & 1 & 6 & 4
\end{array}\right] \\
& \left.\Rightarrow\left[\begin{array}{ll|ll}
1 & 0 & 5 & 3 \\
0 & 1 & 6 & 4
\end{array}\right] \quad \begin{array}{cc}
P+C
\end{array} \begin{array}{ll}
5 & 3 \\
6 & 4
\end{array}\right] \\
& \underset{C \in B}{P}=\frac{1}{20-18}\left[\begin{array}{cc}
4 & -3 \\
-6 & 5
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 / 2 \\
-3 & 5 / 2
\end{array}\right] \text { If }[\vec{x}]_{B}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \text {, find }[\vec{x}]_{C} \text {. } \\
& {[\vec{x}]_{c}=\left[\begin{array}{cc}
2 & -3 / 2 \\
3 & 5 / 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right]=}
\end{aligned}
$$

Eigenvalues and Eigenvectors

Def. Let A be a square matrix. A number λ is an eigenvalue of A if there is a nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

\mathbf{x} is called an eigenvector corresponding to λ.

Ex. Show that $\mathbf{x}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{ccc}0 & -1 & -3 \\ 2 & 3 & 3 \\ -2 & 1 & 1\end{array}\right]$

$$
\begin{array}{r}
A \vec{x}=\left[\begin{array}{rrr}
0 & -1 & -3 \\
2 & 3 & 3 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2 \\
-2
\end{array}\right]=-2\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=-2 \vec{x} \\
\downarrow \\
\lambda=-2
\end{array}
$$

Ex. Show that $\lambda=7$ is an eigenvalue of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x} \\
& A \vec{x}=7 \vec{x} \\
& A \vec{x}-7 \vec{x}=\overrightarrow{0} \\
& A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right] \\
& A \vec{x}-7 I \vec{x}=\overrightarrow{0} \\
& (A-7 I) \vec{x}=\overrightarrow{0} \\
& \begin{array}{r}
{\left[\begin{array}{rr}
-6 & 6 \\
5 & -5
\end{array}\right] \vec{x}=\overrightarrow{0}} \\
\text { eigenvector }=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
\end{aligned}
$$

In the last example, we solved the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$
\rightarrow This is the null space of the matrix $A-\lambda I$
\rightarrow This is a subspace which we call the eigenspace of A corresponding to λ.

Ex. An eigenvalue of $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ is $\lambda=2$. Find a basis for the corresponding eigenspace.

$$
\left.\begin{array}{l}
\begin{array}{l}
(A-x I) \vec{x}=\overrightarrow{0} \\
(A-2 I) \vec{x}=\overrightarrow{0}
\end{array} \quad B=\left\{\left[\begin{array}{l}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\} \\
{\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \vec{x}=\overrightarrow{0}} \\
\left.\left[\begin{array}{lll|l}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow 2 x_{1}-x_{2}+6 x_{3}=0 \Rightarrow \begin{array}{ll}
6 \\
2 & -1 \\
\hline
\end{array}\right] \\
\Rightarrow \vec{x}=\left[\begin{array}{l}
1 / 2 x_{2}-3 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=\frac{1}{2} x_{2}-3 x_{3} \\
x_{2}=x_{2} \\
x_{3}=x_{3}
\end{array}\right]\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] .
$$

Thm. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.
\rightarrow This fact will be useful later.

Ex. Show that $\lambda=3$ is an eigenvalue of $A=\left[\begin{array}{ccc}3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2\end{array}\right]$

$$
\begin{aligned}
& (A-\lambda I) \vec{x}=\overrightarrow{0} \\
& (A-3 I) \vec{x}=\overrightarrow{0} \Rightarrow\left[\begin{array}{ccc|c}
0 & 6 & -8 & 0 \\
0 & -3 & 6 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] \quad \lambda=3 \\
& (A-2 I) \vec{x}=\overrightarrow{0} \Rightarrow\left[\begin{array}{ccc|c}
1 & 6 & -8 & 0 \\
0 & -2 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \lambda=2 \\
& (A-0 I) \vec{x}=\overrightarrow{0} \Rightarrow\left[\begin{array}{ccc|c}
3 & 6 & -8 & 0 \\
0 & 0 & 6 & 0
\end{array}\right] \quad \lambda=0
\end{aligned}
$$

The eigenvalues of a triangular matrix are the entries on the main diagonal.
\rightarrow Note that $\lambda=0$ is also an eigenvalue in the previous example
\rightarrow When 0 is an eigenvalue, this means that $A \mathbf{x}=0 \mathbf{x}$, or $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution
\rightarrow This means that A is not invertible

Thm. Invertible Matrix Theorem
Let A be $n \times n$. The following are equivalent:
i. $\quad A$ is invertible
ii. A is row equivalent to I.
iii. A has n pivot positions (one in each row and column).
iv. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
v. The columns of A are linearly independent.
vi. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
vii. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}.
viii. The columns of A span \mathbb{R}^{n}.
ix. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
x. The determinant of A is not zero
xi. $\operatorname{Col} A=\mathbb{R}^{n}$
xii. $\operatorname{Row} A=\mathbb{R}^{n}$
xiii. Nul A is the zero subspace
xiv. The number 0 is not an eigenvalue of A

For more complicated matrices A, we need a process to find eigenvalues and eigenvectors:
$\rightarrow(A-\lambda I) \mathbf{x}=0$
\rightarrow By the Invertible Matrix Theorem, this has a nontrivial solution only when $(A-\lambda I)$ is not invertible
\rightarrow This means that $\operatorname{det}(A-\lambda I)=0$
\rightarrow The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right|=(2-\lambda)(-6-\lambda)-9 & =\lambda^{2}+4 \lambda-21 \\
& =(\lambda+7)(\lambda-3)=0 \\
& \lambda=-7,3
\end{aligned}
$$

Ex. Find the eigenvalues and bases for the corresponding eigenspaces of $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
3-\lambda & 0 & 0 \\
0 & 2-\lambda & 2 \\
0 & 1 & 1-\lambda
\end{array}\right|=(3-\lambda)\left|\begin{array}{cc}
2-\lambda & 2 \\
1 & 1-\lambda
\end{array}\right|=(3-\lambda)[(2-\lambda)(1-\lambda)-2] \\
& =(3-\lambda)\left(\lambda^{2}-3 \lambda\right)=(3-\lambda) \lambda(\lambda-3)=0 \quad \lambda=0,3 \\
& \lambda=3:(A-3 I) \vec{x}=\overrightarrow{0} \Rightarrow\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 \\
0 & 1 & -2 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow x_{2}-2 x_{3}=0 \Rightarrow \begin{array}{l}
x_{1}=x_{1} \\
x_{2}=2 x_{3} \\
x_{3}=x_{3}
\end{array} \\
& \vec{X}=\left[\begin{array}{l}
x_{1} \\
2 x_{3} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
\lambda=0:(A-0 I) \vec{x}=\overrightarrow{0} & \Rightarrow\left[\begin{array}{lll|l}
3 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right]
\end{aligned} \Rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 2 & 1 & c \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{c}
x_{1}=0 \\
2 x_{2}+x_{3}=0
\end{array} \Rightarrow \begin{array}{l}
x_{1}=0 \\
x_{2}=-\frac{1}{2} x_{3} \\
x_{3}=x_{3}
\end{array} \Rightarrow \vec{x}=\left[\begin{array}{c}
0 \\
-1 / 2 x_{3} \\
x_{3}
\end{array}\right]\right.
$$

When A is $n \times n$, the characteristic equation is degree n and is much harder to solve. To make life easier, let's review some properties of determinants:

- Let U be an echelon form of A obtained by replacements and interchanges (no scaling), and let r be the number of interchanges, then

$$
\operatorname{det} A=\left\{\begin{array}{cc}
(-1)^{r} \operatorname{det} U & \text { when } A \text { is invertible } \\
0 & \text { when } A \text { is not invertible }
\end{array}\right.
$$

When A is $n \times n$, the characteristic equation is degree n and is much harder to solve. To make life easier, let's review some properties of determinants:

- $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$
- If A is triangular, $\operatorname{det} A$ is the product of the entries on the main diagonal
- Row replacement doesn't change the determinant
- Row interchange changes the sign of the determinant
- Row scaling also scales the determinant by the same factor

Ex. Find the determinant of $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$

$$
\left|\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right| \xlongequal{R_{2} \rightarrow-2 R_{1}+R_{2}}\left|\begin{array}{ccc}
1 & 5 & 0 \\
0 & -6 & -1 \\
0 & -2 & 0
\end{array}\right| \xlongequal[R_{3}+\frac{1}{3} R_{2}+R_{3}]{ }\left|\begin{array}{ccc}
1 & 5 & 0 \\
0 & -6 & -1 \\
0 & 0 & \frac{1}{3}
\end{array}\right|=(1)(-6)\left(\frac{1}{3}\right)=-2
$$

Ex. Find the characteristic equation of $A=\left[\begin{array}{cccc}3 & 6 & -8 & 4 \\ 0 & Q & 6 & -6 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 3\end{array}\right]$

$$
(3-\lambda)(1-\lambda)(2-\lambda)(3-\lambda)=0
$$

We say that $\lambda=3$ is an eigenvalue of multiplicity 2 .

For this class, we will only focus on real valued eigenvalues.

- It should be noted, though, that eigenvalues are solutions to $n^{\text {th }}$ degree polynomial equations, and so they can be complex
Also, in this class we will only be solving characteristic equations that are quadratic.

Def. Two matrices A and B are similar if there is some matrix P such that $A=P B P^{-1}$
We say that the transformation $A \mapsto P A P^{-1}$ is called a similarity transformation.

Thy. If two matrices are similar, then they have the same characteristic equation and, therefore, the same eigenvalues with the same multiplicities.
\rightarrow Let's prove it.

$$
\begin{aligned}
& \frac{\text { Assume }}{\left.\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P B P^{-1}-\lambda I\right)=\operatorname{det}\left(P B P^{-1}-\lambda P P^{-1}\right)\right)} \\
& =\operatorname{det}\left(P B P^{-1}-P \lambda I P^{-1}\right)=\operatorname{det}\left[P(\beta-\lambda I) P^{-1}\right] \\
& =(\operatorname{det} P)[\operatorname{det}(\beta-\lambda I)]\left(\operatorname{det} P^{-1}\right)=[\operatorname{det}(\beta-\lambda I)](\operatorname{det} P)\left(\operatorname{det} P^{-1}\right) \\
& =\operatorname{det}(B-\lambda I) \operatorname{dt}\left(\rho \cdot \rho^{-1}\right)=\operatorname{det}(B-\lambda I) \operatorname{det} I=\operatorname{dt}(B-\lambda I)
\end{aligned}
$$

