Inner Product

The inner product of two vectors $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$
is defined as

$$
\vec{u} \cdot \vec{v}=\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

This is the dot product between \mathbf{u} and \mathbf{v}.

Ex. Compute $\mathbf{u} \cdot \mathbf{v}$ for $\mathbf{u}=\left[\begin{array}{c}2 \\ -5 \\ -1\end{array}\right] \xrightarrow{\text { and } \mathbf{v} \Longrightarrow}\left[\begin{array}{c}3 \\ 2 \\ -3\end{array}\right]$

$$
\vec{u} \cdot \vec{v}=6+(-10)+3=-1
$$

Properties of the Inner Product

1) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
3) $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$
4) $\mathbf{a} \cdot \mathbf{a} \geq 0$ and $\mathbf{a} \cdot \mathbf{a}=0$ if and only if $\mathbf{a}=\mathbf{0}$

Def. The length (or norm) of a vector is denoted $\|\mathbf{a}\|$

Thy. The length of vector $\mathbf{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ is $\|\mathbf{a}\|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}$
The length of vector $\mathbf{a}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ i $\|\mathbf{a}\|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}}$
Note 1: $\|\mathbf{a}\|^{2}=\mathbf{a} \cdot \mathbf{a}$

$$
\|\vec{a}\|^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}
$$

Note 2: $\|c \mathbf{a}\|=|c|\|\mathbf{a}\| \leftarrow$ Prove it.

$$
\begin{aligned}
& \text { c} \vec{a}=\left[\begin{array}{l}
c a_{1} \\
c a_{2} \\
c a_{3}
\end{array}\right] \quad\|c \vec{a}\|=\sqrt{\left(c a_{1}\right)^{2}+\left(c a_{2}\right)^{2}+\left(c_{3}\right)^{2}}=\sqrt{c^{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}\right)}=|c|\|\vec{a}\|
\end{aligned}
$$

Def. A unit vector is a vector whose length is 1 .
\rightarrow This process is sometimes called normalization.
The unit vector in the direction of \mathbf{a} is

$$
\mathbf{u}=\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

Ex. Find the unit vector in the direction of $\mathbf{v}=$
$\|\vec{v}\|=\sqrt{2^{2}+(-1)^{2}+(-2)^{2}+0^{2}}=\sqrt{4+1+4}=3$
$\left[\begin{array}{c}2 \\ -1 \\ -2 \\ 0\end{array}\right]$

$$
\vec{u}=\frac{\vec{v}}{3}=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-2 / 3 \\
0
\end{array}\right]
$$

$\underset{\text { Find a unit vector that is a basis for } W .}{\left.\text { Ex. Let } W \text { be a subspace of } \mathbb{R}^{2} \text { spanned by } v=\left[\begin{array}{c}2 / 3 \\ 1\end{array}\right] . \underset{\vec{w}}{\overrightarrow{\mathrm{E}}}=\left[\begin{array}{l}2 \\ 3\end{array}\right], ~\right]}$

$$
\begin{array}{r}
\|\vec{w}\|=\sqrt{2^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13} \\
\vec{u}=\frac{\vec{w}}{\sqrt{13}}=\left[\begin{array}{l}
2 / \sqrt{13} \\
3 / \sqrt{13}
\end{array}\right]
\end{array}
$$

$$
\frac{1}{\sqrt{13}}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Distance:

In 1-D, the distance between points a and b is $|b-a|$

In higher dimensions, this can be extended to be

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

$$
\begin{gathered}
\text { Ex. Find dist }\left(\left[\begin{array}{l}
7 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) . \\
\vec{u} \vec{v} \\
\vec{u}-\vec{v}=\left[\begin{array}{c}
4 \\
-1
\end{array}\right] \\
\text { di,st }=\|\vec{u}-\vec{v}\|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{gathered}
$$

Note this is same as using the distance formula on the points (7,1) and (3,2).

The inner product is used to find the angle between two vectors:

Thy. If θ is the angle between \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Ex. Find the angle between $\mathbf{a}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}5 \\ -3 \\ 2\end{array}\right]$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=10+(-6)+(-2)=2 \\
& \|\vec{a}\|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=\sqrt{4+4+1}=3 \\
& \|\vec{b}\|=\sqrt{s^{2}+(-3)^{2}+2^{2}}=\sqrt{2 s+9+4}=\sqrt{38}
\end{aligned}
$$

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta \\
2=3 \sqrt{38} \cos \theta \\
\cos \theta=\frac{2}{3 \sqrt{38}}
\end{gathered}
$$

The. Two vectors \mathbf{a} and \mathbf{b} are orthogonal if $\mathbf{a} \cdot \mathbf{b}=0$.
Orthogonal $=$ Perpendicular $=$ Normal
Ex. Show that $\underset{\vec{a}}{\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]}$ and $\left[\begin{array}{c}5 \\ -4 \\ 2\end{array}\right]$ are orthogonal

$$
\vec{a} \cdot \vec{b}=10-8-2=0
$$

Thy. Pythagorean Theorem
Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Ex. Verify this for $\underset{\vec{u}}{\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]} \underset{\vec{v}}{[} \underset{\vec{v}}{\left[\begin{array}{c}5 \\ -4 \\ 2\end{array}\right]}$

$$
\begin{aligned}
& \|\vec{u}\|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3 \\
& \|\vec{v}\|=\sqrt{5^{2}+(-4)^{2}+2^{2}}=\sqrt{45} \\
& \|\vec{u}+\vec{v}\|=\sqrt{7^{2}+2^{2}+1^{2}}=\sqrt{54}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
7 \\
-2 \\
1
\end{array}\right]} \\
\vec{u}+\vec{v} \\
\|\vec{u}\|^{2}+\|\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2} \\
3^{2}+\sqrt{45}^{2}=\sqrt{54}^{2} \\
9+45=54
\end{gathered}
$$

Def. If \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, we say \mathbf{z} is orthogonal to W.

The set of all vectors orthogonal to W is called the orthogonal complement of W, and is denoted W^{\perp} (called " W perpendicular" or " W perp").

- $\quad W^{\perp}$ is itself a subspace of \mathbb{R}^{n}.

If W is a plane (through the origin) in \mathbb{R}^{3}, then W^{\perp} is the set of all vectors orthogonal to the plane.

- A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
\rightarrow Prove it. Assume

$$
\begin{aligned}
W & =\operatorname{apan}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \\
& =\left\{c_{1} \overrightarrow{v_{1}}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}\right\}
\end{aligned}
$$

Assume \vec{x} is orthog. to $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$,

$$
\vec{x} \cdot \overrightarrow{v_{1}}=0 \quad \vec{x} \cdot \overrightarrow{v_{2}}=0 \quad \vec{x} \cdot \vec{v}_{3}=0
$$

Show \vec{x} is orthog. to $\vec{w}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}$

$$
\begin{gathered}
\vec{x} \cdot \vec{w}=\vec{x} \cdot\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}\right)=c_{1}\left(\vec{x} \cdot \vec{v}_{1}\right)+c_{2}\left(\vec{x} \cdot \vec{v}_{2}\right)+c_{3}\left(\vec{x} \cdot \overrightarrow{v_{3}}\right)=0 \\
0
\end{gathered}
$$

$$
\begin{aligned}
& \vec{x} \cdot \vec{w}_{1}=1-1+0=0 \quad \checkmark \\
& \vec{x} \cdot \vec{w}_{2}=2+0+-2=0 \quad \therefore \quad \vec{x} \in W^{1}
\end{aligned}
$$

Ex. Evaluate $\left[\begin{array}{ll}\underline{2} & 1 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}\underline{5} \\ 2\end{array}\right]=\left[\begin{array}{c}12 \\ 6\end{array}\right]$

Note: $A \mathbf{x}=\left[\begin{array}{c}\left(\operatorname{Row}_{1} A\right) \cdot \mathbf{x} \\ \left(\operatorname{Row}_{2} A\right) \cdot \mathbf{x} \\ \mathrm{M} \\ \left(\operatorname{Row}_{n} A\right) \cdot \mathbf{x}\end{array}\right]$
\rightarrow If $A \mathbf{x}=\mathbf{0}$ (meaning \mathbf{x} is in $\operatorname{Nul} A)$ then $\left(\operatorname{Row}_{k} A\right) \cdot \mathbf{x}=0$
$\rightarrow \mathbf{x}$ is orthogonal to every row of A
$\rightarrow \mathbf{x}$ is in $(\operatorname{Row} A)^{\perp}$

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A
$$

Also, $\operatorname{Col} A=\operatorname{Row}\left(A^{\mathrm{T}}\right)$
$\rightarrow(\operatorname{Col} A)^{\perp}=\left(\operatorname{Row} A^{\mathrm{T}}\right)^{\perp}=\operatorname{Nul} A^{\mathrm{T}}$

Def. A set $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ of vectors in \mathbb{R}^{n} is called an orthogonal set if each pair of distinct vectors in the set is orthogonal.

$$
\rightarrow \mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \text { as long as } i \neq j
$$

Ex. Show that $\left\{\underset{\vec{u}}{\left.\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \underset{\vec{w}}{[}\right]\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]}\right\}$ is an orthogonal set.

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=-3+2+1=0 \\
& \vec{u} \cdot \vec{w}=-3-4+7=0 \\
& \vec{v} \cdot \vec{w}=1-8+7=0
\end{aligned}
$$

An orthogonal set is linearly independent.
\rightarrow Let's prove it.
Assume $\left\{\vec{v}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is ortheg. set
If $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}$, show $c_{1}, c_{2}, c_{3}=0$.

$$
\begin{gathered}
\vec{v}_{1} \cdot\left(c_{1} \overrightarrow{v_{1}}+c_{2} \vec{v}_{2}+c_{3} \overrightarrow{v_{3}}\right)=\overrightarrow{v_{i}} \cdot \overrightarrow{0} \\
c_{1}\left(\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}\right)+c_{2}\left(\vec{v}_{2} \cdot \overrightarrow{v_{2}}\right)+c_{3}\left(\overrightarrow{v_{v}} \cdot \overrightarrow{v_{3}}\right)=0 \\
\left.\overrightarrow{0}_{0}\right)=0 \\
c_{1}(\underbrace{\left.\overrightarrow{v_{0}} \cdot \overrightarrow{v_{1}}\right)}_{\vec{x}_{0}}=0 \\
c_{1}=0
\end{gathered}
$$

Def. An orthogonal basis is a basis for a subspace that is also an orthogonal set.
\rightarrow The standard basis of $\mathbb{R}^{n},\left\{\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right], \ldots,\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right\}$ is an orthogonal basis.
\rightarrow An orthogonal basis is useful because it's easy to compute the weights.

Thm. If $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\boldsymbol{p}}\right\}$ is an orthogonal basis of W, and if \mathbf{y} is in $W\left(\mathbf{y}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\ldots+c_{p} \mathbf{b}_{p}\right)$, then the weights are given by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{b}_{j}}{\mathbf{b}_{j} \cdot \mathbf{b}_{j}}
$$

\rightarrow This makes it easy to find the coordinate vector

$$
[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right]
$$

\rightarrow Let's prove it.

$$
\begin{aligned}
& \vec{y}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+c_{2} \vec{b}_{3} \\
& \vec{b}_{1} \cdot \vec{y}=\vec{b}_{1}\left(c_{1} \vec{b}+c_{2} \vec{b}_{2}+c_{3} \vec{b}_{3}\right) \\
& \overrightarrow{b_{1}} \cdot \vec{y}=c_{1}\left(\vec{b}_{1} \cdot \vec{b}_{1}\right)+c_{2}\left(\begin{array}{c}
\overrightarrow{b_{1}} \cdot \vec{b}_{2} \\
\cdots \\
\cdots
\end{array}+c_{3}\left(\overrightarrow{b_{1}} \cdot \overrightarrow{b_{3}}\right)\right. \\
& \frac{\vec{b}_{1} \cdot \vec{y}}{\vec{b}_{1} \cdot \vec{b}_{1}}=c_{1}
\end{aligned}
$$

Ex. Express $\mathbf{y}=\left[\begin{array}{c}6 \\ 1 \\ -8\end{array}\right]$ as a linear combination of the vectors in the orthogonal basis $S=\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$.

$$
\begin{aligned}
& c_{1}=\frac{\vec{y} \cdot \overrightarrow{b_{1}}}{\overrightarrow{b_{1}} \cdot \vec{b}_{1}}=\frac{18+1-8}{9+1+1}=\frac{11}{11}=1 \quad \overrightarrow{b_{1}} \\
& c_{2}=\frac{\vec{y} \cdot \overrightarrow{b_{2}}}{\vec{b}_{2} \cdot \vec{b}_{2}}=\frac{-6+2-8}{1+4+1}=\frac{-12}{6}=-2 \quad \overrightarrow{b_{2}}=1 \overrightarrow{b_{1}}-2 \overrightarrow{b_{2}}-1 \overrightarrow{b_{3}} \\
& c_{3}=\frac{\vec{y} \cdot \overrightarrow{b_{2}}}{\frac{b_{3}}{b_{3}} \cdot \vec{b}_{3}}=\frac{-6-4-56}{1+16+49}=\frac{-66}{66}=-1
\end{aligned}
$$

Without this trick, we have to solve the system of equations.

Given a vector \mathbf{u} in \mathbb{R}^{n}, consider the problem of decomposing a vector \mathbf{y} into the sum of two vectors: one that is in the direction of \mathbf{u} and the other that is orthogonal to \mathbf{u} :

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

$\hat{\mathbf{y}}$ is in the direction of \mathbf{u}, so $\hat{\mathbf{y}}=\alpha \mathbf{u}$.

\rightarrow This is called the orthogonal projection of \mathbf{y} onto \mathbf{u}
\mathbf{z} is called the component of \mathbf{y} orthogonal to \mathbf{u}
\rightarrow Let's find a formula for α
$\frac{\vec{y} \cdot \vec{u}}{\|\vec{y}\|\|\vec{n}\|}=\frac{\alpha\|\vec{n}\|}{\left\|-y_{y}\right\|}$
$\alpha=\frac{\vec{y} \cdot \vec{u}}{\|\vec{u}\|^{2}}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$

If the L is the line containing \mathbf{u} (all multiples of \mathbf{u}), we can write

$$
\begin{aligned}
& \hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \\
& \vec{z}=\vec{y}-\hat{y}
\end{aligned}
$$

Ex. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write \mathbf{y} as the sum of a $\frac{\text { vector in } \operatorname{Span}\{\mathbf{u}\}}{\hat{y}}$ and a vector orthogonal to \mathbf{u}.

$$
\begin{gathered}
\hat{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{28+12}{16+4}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{40}{20}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
\vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \\
\vec{y}=\left[\begin{array}{l}
8 \\
4
\end{array}\right]+\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
\end{gathered}
$$

Ex. In the previous example, find the distance from \mathbf{y} to the line containing \mathbf{u}.

$$
\|\vec{z}\|=\|\vec{y}-\hat{y}\|=\sqrt{(-1)^{2}+z^{2}}=\sqrt{5}
$$

Def. An orthonormal set is an orthogonal set of unit vectors.

If a subspace is spanned by an orthonormal set, then the set is called an orthonormal basis for the subspace.

Ex. Show that $\left\{\left[\begin{array}{l}3 / \sqrt{11} \\ 1 / \sqrt{11} \\ 1 / \sqrt{11}\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{66} \\ -4 / \sqrt{66} \\ 7 / \sqrt{66}\end{array}\right]\right\}$ is an
orthonormal set. \vec{u}
$\vec{u} \cdot \vec{v}=\frac{-3}{\sqrt{66}}+\frac{2}{\sqrt{66}}+\frac{1}{\sqrt{66}}=0$

$$
\|\vec{u}\|=\sqrt{\frac{9}{11}+\frac{1}{11}+\frac{1}{11}}=\sqrt{\frac{11}{11}}=1
$$

$\vec{u} \cdot \vec{w}=\frac{-3}{\sqrt{726}}+\frac{-4}{\sqrt{726}}+\frac{7}{\sqrt{726}}=0$

$$
\begin{aligned}
& \|\vec{v}\|=\sqrt{\frac{1}{6}+\frac{4}{6}+\frac{1}{6}}=\sqrt{\frac{6}{6}}=1 \\
& \|\vec{w}\|=\sqrt{\frac{1}{66}+\frac{16}{66}+\frac{49}{66}}=\sqrt{\frac{66}{66}}=1
\end{aligned}
$$

This is the earlier orthogonal set where each vector is made into a unit vector.

The. A matrix U (not necessarily square) has orthonormal columns if and only if $U^{\mathrm{T}} U=I$. $\quad \vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ are orthonormal
\rightarrow Prove it

$$
\begin{aligned}
& u=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right] \\
& u^{+}=\left[\begin{array}{c}
\vec{u}_{1}^{\top} \\
\vec{u}_{2} \\
\vec{u}_{3}^{\top}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
u^{\top} u & =\left[\begin{array}{l}
\vec{u}_{1} \\
\overrightarrow{u_{2}} \\
\overrightarrow{u_{3}}
\end{array}\right]\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \overrightarrow{u_{3}}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}} & \overrightarrow{u_{1}} \cdot \overrightarrow{u_{2}} & \overrightarrow{u_{1}} \cdot \overrightarrow{u_{3}} \\
\overrightarrow{u_{2}} \cdot \overrightarrow{u_{1}} & \overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}} & \overrightarrow{u_{2}} \cdot \overrightarrow{u_{3}} \\
\overrightarrow{u_{3}} \cdot \overrightarrow{u_{1}} & \overrightarrow{u_{3}} \cdot \overrightarrow{u_{2}} & \overrightarrow{u_{3}} \cdot \overrightarrow{u_{3}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thm. Let U be a matrix with orthonormal columns.
i. $\|U \mathbf{x}\|=\|\mathbf{x}\|$
ii. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
iii. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$
\rightarrow This means that the transformation $\mathbf{x} \mapsto U \mathbf{x}$ preserves
length and orthogonality

If U is a square matrix with orthonormal columns, then

$$
U^{T} U=I
$$

$\rightarrow U^{T}=U^{-1}$
\rightarrow We call this an orthogonal matrix
\rightarrow In this case, the rows of U are orthonormal as well

$$
\left[\begin{array}{ccc}
3 / \sqrt{11} & -1 / \sqrt{6} & -1 / \sqrt{66} \\
1 / \sqrt{11} & 2 / \sqrt{6} & -4 / \sqrt{66} \\
1 / \sqrt{11} & 1 / \sqrt{6} & 7 / \sqrt{66}
\end{array}\right]
$$

