Orthogonal Projections

Last class, we projected a vector \mathbf{y} onto a line that was the span of a vector $\mathbf{u} \rightarrow$ a subspace with dimension 1
Today, we will discuss projecting a vector \mathbf{y} onto a subspace that has a dimension greater than 1

Consider $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$, an orthogonal basis of \mathbb{R}^{5} and the vector \mathbf{y} in \mathbb{R}^{5}.

Consider the subspace $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}+c_{4} \mathbf{u}_{4}+c_{5} \mathbf{u}_{5} \\
\mathbf{y}=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}\right)+(\underbrace{\mathbf{y}=\overrightarrow{\mathbf{z}}_{1}+\mathbf{z}_{2}}_{\left.c_{3} \mathbf{u}_{3}+c_{4} \mathbf{u}_{4}+c_{5} \mathbf{u}_{5}\right)}
\end{gathered}
$$

$\rightarrow \mathbf{z}_{1}$ is in W, let's show \mathbf{z}_{2} is in W^{\perp}
Show \vec{z}_{2} is orthog. to \vec{u}_{1} and \vec{u}_{2}

$$
\begin{aligned}
& \text { an } \vec{z}_{2} \text { is orthog. to } \vec{u}_{1} \text { and } \vec{u}_{2} \\
& \vec{z}_{2} \cdot \overrightarrow{u_{1}}=\left(c_{3} \overrightarrow{u_{3}}+c_{4} \overrightarrow{u_{4}}+c_{5} \vec{u}_{5}\right) \cdot \overrightarrow{u_{1}}=c_{3}\left(\overrightarrow{u_{3}} \cdot \overrightarrow{u_{1}}\right)+c_{4}\left(\vec{u}_{4} \cdot \vec{u}_{1}\right)+c_{5}\left(\vec{u}_{5} \cdot \overrightarrow{u_{1}}\right)=0 \\
& \vec{z}_{2} \cdot \overrightarrow{u_{2}}=
\end{aligned}
$$

This means that $W^{\perp}=\operatorname{span}\left\{\mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$

Thm. Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Every vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.
If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis of W, then

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}
$$

and $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$
$\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W and is sometimes written $\operatorname{proj}_{W} y$.

Ex. Let $\left\{\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ \frac{u_{1}}{n_{2}}\end{array}\right]\right\}$ be an orthogonal basis for W. Write $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \begin{aligned} & \overrightarrow{u_{1}} \\ & \text { as the sum of a vector in } W \text { and a vector in } W^{\perp} . \\ & \overrightarrow{u_{2}}\end{aligned}$

$$
\vec{y}=\hat{y}+\vec{z}=\left[\begin{array}{c}
-.4 \\
2 \\
.2
\end{array}\right]+\left[\begin{array}{c}
1.4 \\
0 \\
2.8
\end{array}\right]
$$

$$
\begin{aligned}
& \hat{y}=\frac{\vec{y} \cdot \overrightarrow{u_{1}}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\vec{u}_{2} \cdot \overrightarrow{u_{2}}} \vec{u}_{2}=\frac{2+10-3}{4+2 s+1}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{-2+2+3}{4+1+1}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-6 \\
1.5 \\
-3
\end{array}\right]+\left[\begin{array}{c}
-1 \\
5 \\
-5
\end{array}\right] \\
& \vec{z}=\vec{y}-\vec{y}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
-4 \\
2 \\
.2
\end{array}\right]=\left[\begin{array}{c}
1.4 \\
0 \\
2.8
\end{array}\right] \in W+ \\
& =\left[\begin{array}{c}
-.4 \\
2 \\
.2
\end{array}\right] \in W
\end{aligned}
$$

Thm. Best Approximation Theorem

$\hat{\mathbf{y}}$ is the vector in W that is closest to \mathbf{y}, in the sense that, for any vector \mathbf{v} in W,

$$
\|\mathbf{y}-\hat{\mathbf{y}}\| \leq\|\mathbf{y}-\mathbf{v}\|
$$

$\hat{\mathbf{y}}$ is called the best approximation of \mathbf{y} by elements of W.
Because we haven't discussed the basis of W, this means that $\hat{\mathbf{y}}$ is the same no matter what basis is used for W.

Ex. Find the distance from $\mathbf{y}=\left[\begin{array}{c}-1 \\ -5 \\ 10\end{array}\right]$ to $W=\operatorname{span}\left\{\begin{array}{c}\left.\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\} \text {. or hog. } \quad \text {. } \vec{u}_{\mathbf{u}}\end{array}\right.$

$$
\begin{aligned}
& \hat{y}=\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\vec{u}_{1} \cdot \vec{u}_{1}} \overrightarrow{u_{1}}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}} \vec{u}_{2}=\frac{-5+10+10}{25+4+1}\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right]+\frac{\overrightarrow{u_{1}}}{1+4+10-10}\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2.5 \\
-1 \\
-5
\end{array}\right]+\left[\begin{array}{c}
-3 \\
-5 \\
-7 \\
3
\end{array}\right] \\
& \vec{z}=\vec{y}-\vec{y}=\left[\begin{array}{c}
-1 \\
-5 \\
-8 \\
4
\end{array}\right]-\left[\begin{array}{c}
-1 \\
-8 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
6
\end{array}\right] \\
& \text { dist. }=\|\vec{z}\|=\sqrt{0+3^{2}+6^{2}}=\sqrt{45}
\end{aligned}
$$

If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of W, then

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{\mathbf{x}}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{z} \cdot \mathbf{u}_{z}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{\mathcal{p}} \cdot \mathbf{u}_{\bar{p}}} \mathbf{u}_{p} \Gamma
$$

If we define $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then $\hat{\mathbf{y}}=U U^{T} \mathbf{y}$

$$
=\left(\vec{u}_{1} \cdot \vec{y}\right) \vec{u}_{1}+\left(\vec{u}_{2} \cdot \vec{y}_{y}\right) \vec{u}_{2}+\ldots+\left(\vec{u}_{p} \cdot \vec{y}\right) \vec{u}_{p} .
$$

$$
\begin{aligned}
& \rightarrow \text { Prove it } \\
& n^{\top}=\left[\begin{array}{c}
\vec{u}_{1} \top \\
\vec{u}_{2} \tau \\
\vdots \\
\vdots \\
\vec{u}_{p}
\end{array}\right] \\
& \hat{y}=U \cdot U^{\top} \vec{y}=U\left[\begin{array}{l}
\overrightarrow{u_{1}} \\
\vec{u}_{2} T \\
\vdots \vec{u}_{p} T
\end{array}\right] \vec{y}=U\left[\begin{array}{c}
\vec{u}_{1} \cdot \vec{y} \\
\overrightarrow{u_{2}} \cdot \vec{y} \\
\overrightarrow{u_{p}} \cdot \vec{y}
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \cdots \overrightarrow{u_{p}}
\end{array}\right]\left[\begin{array}{l}
\overrightarrow{u_{1}} \cdot \vec{y} \\
\vec{u}_{u_{2}}
\end{array}\right]
\end{aligned}
$$

Ex. Let $W=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ (note its orthogonal).

$$
\begin{aligned}
& \vec{u}_{1}=\frac{1}{\sqrt{1+0+1}}\left[\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\text { Find a matrix } A \text { such that } \underbrace{p_{2}}_{\hat{y}} \\
-1 / \sqrt{2}
\end{array}\right] \\
& \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& A=U u^{\top} \\
& A=A y \text { for any vector } \mathbf{y} . \\
&
\end{aligned}
$$

We've seen that it's useful to have an orthogonal basis
\rightarrow If we are given some other basis, we can find an orthogonal basis using the Gram-Schmidt Process

Gram-Schmidt Process

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\overbrace{\operatorname{proj}_{\text {span }\left\{\mathbf{v}_{1} \mid\right.} \mathbf{x}_{2}}^{\mathbf{x}_{\mathbf{2}}}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\overbrace{\operatorname{proj}_{\text {span }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}} \mathbf{x}_{3}}^{\hat{x}_{3}}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right] \\
& \overrightarrow{v_{2}}=\vec{x}_{2}-\frac{\vec{v}_{1} \cdot x_{2}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-\frac{3+12+0}{9+36+0}\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
&\left\{\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]\right\}
\end{aligned}
$$

Ex. Let $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$, find an orthogonal

$$
\begin{aligned}
& \text { basis. } \\
& \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{v}_{1} \cdot \vec{x}_{2}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right] \rightarrow \vec{v}_{2}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
& \vec{v}_{3}=\overrightarrow{x_{3}}-\frac{\overrightarrow{x_{x}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \vec{v}_{1}}-\frac{\overrightarrow{x_{3}}}{\vec{v}_{2}} \cdot \overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}} \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{2}{12}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]-\left[\begin{array}{c}
-1 / 2 \\
1 / 6 \\
1 / 6 \\
1 / 6
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right] \rightarrow \overrightarrow{v_{3}}=\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right] \\
& \vec{v}_{1} \cdot \vec{v}_{2}=0 \quad \vec{v}_{2} \cdot \overrightarrow{v_{3}}=0 \\
& \vec{v}_{1} \cdot \vec{v}_{3}=0 v
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. Let } W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right\} \text {, find an orthonormal } \\
& \text { basis. } \\
& \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right] \\
& \vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right] \quad \vec{u}_{2}=\frac{\overrightarrow{v_{2}}}{\left\|\vec{v}_{2}\right\|}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 / \sqrt{12} \\
1 / \sqrt{12} \\
1 / \sqrt{12}
\end{array}\right] \\
& \vec{u}_{3}=\frac{\overrightarrow{v_{3}}}{\left\|\vec{v}_{3}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / \sqrt{6} \\
י / / \sqrt{6}
\end{array}\right]
\end{aligned}
$$

Ex. Let $W=\operatorname{Nul}\left[\begin{array}{lll}1 & -1 & -2 \\ 2 & -2 & -4 \\ 4 & -4 & -8\end{array}\right] \frac{\text { find the point in } W \text { that is }}{\hat{y}}$ closest to $\mathbf{y}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and find the distance from \mathbf{y} to W.

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & -1 & -2 & 0 \\
2 & -2 & -4 & 0 \\
4 & -4 & -8 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
x_{1}-x_{2}-2 x_{3}=0 \Rightarrow \begin{array}{l}
x_{1}=x_{2}+2 x_{3} \\
x_{2}=x_{2} \\
x_{3}=x_{3}
\end{array} \Rightarrow \vec{x}=\left[\begin{array}{l}
x_{2}+2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{[}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \overrightarrow{v_{2}}=\overrightarrow{n_{2}}-\frac{\overrightarrow{n_{2}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}} \overrightarrow{v_{1}}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} \\
\overrightarrow{v_{1}}
\end{array}} \\
\vec{v}_{2}
\end{gathered}
$$

$$
\begin{aligned}
& \vec{y}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
& \hat{y}=\frac{\vec{y} \cdot \overrightarrow{v_{1}} \overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}+\vec{y} \cdot \overrightarrow{v_{2}} \overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}}}{}=\frac{0}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
-1 / 3 \\
1 / 3
\end{array}\right] \\
& \vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
1 / 3 \\
-1 / 3 \\
1 / 3
\end{array}\right]=\left[\begin{array}{c}
-1 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right] \\
& \|\vec{z}\|=\sqrt{\frac{1}{9}+\frac{1}{9}+\frac{4}{9}}=\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{3}
\end{aligned}
$$

