Vectors

A matrix with only one column is called a <u>column vector</u>, or simply a <u>vector</u>.

$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

The set of all vectors with 2 entries is \mathbb{R}^2 (read R-two), since each of the two entries can be any real number.

Two vectors are equal if the corresponding entries are equal.

Ordered pairs in the *xy*-plane, like vectors in \mathbb{R}^2 , are represented by two numbers.

We can identify the plotted point (3,-1) with the

column vector
$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
.

Sometimes, it is useful to include a directed line segment (arrow) from the origin to the point, though we are not interested in any of the points on the segment.

(2,2) (2,2) (-2,-1) (3,-1) (3,-1)

FIGURE 1 Vectors as points.

FIGURE 2 Vectors with arrows.

Adding and subtracting vectors means performing the operations on corresponding entries

Scalar multiplication means multiplying a vector by a constant (scalar)

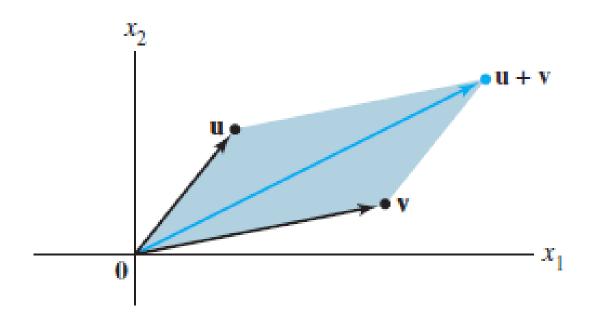
→ We do this by multiplying each entry by the constant

Ex. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

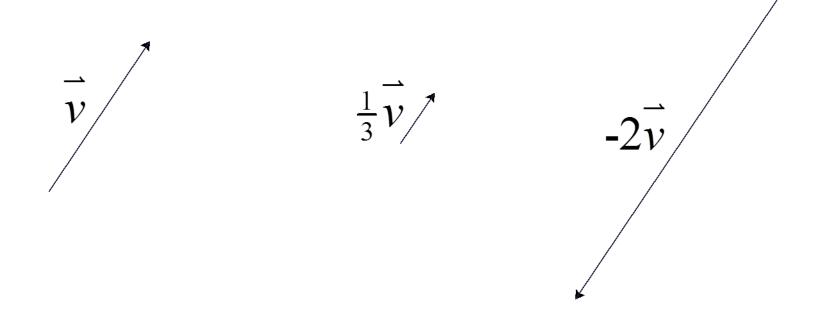
a. 3**u**

b. $3\mathbf{u} - \mathbf{v}$

If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the xy-plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram formed by \mathbf{u} and \mathbf{v} .



Def. If c is a scalar and \mathbf{v} is a vector, then $c\mathbf{v}$ is the vector with the same direction as \mathbf{v} that has length c times as long as \mathbf{v} . If c < 0, then $c\mathbf{v}$ goes in the opposite direction as \mathbf{v} .



These ideas can be extended to n-dimensional space, \mathbb{R}^n .

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

The <u>zero vector</u>, **0**, is the vector whose entries are all zero.

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = (cd)(\mathbf{u})$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$. (viii) $\mathbf{1}\mathbf{u} = \mathbf{u}$

(iv)
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
, (viii) $1\mathbf{u} = \mathbf{u}$ where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

A <u>linear combination</u> of vectors involves multiplying each vector by a constant coefficient and adding the results.

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$

→ The vector
$$\mathbf{u} = \begin{bmatrix} 14 \\ -7 \end{bmatrix}$$
 is a linear combination of

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \text{ and } \mathbf{v}_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \text{ because } \mathbf{u} = 3\mathbf{v}_1 + 2\mathbf{v}_2.$$

The coefficients are called the <u>weights</u> of the combination

Ex. Determine if **b** can be written as a linear

combination of
$$\mathbf{a}_1$$
 and \mathbf{a}_2 .
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

Notice that the columns of our augmented matrix were \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b} .

→ We can abbreviate by writing $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{b}]$ In general:

A <u>vector equation</u> $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{b}]$

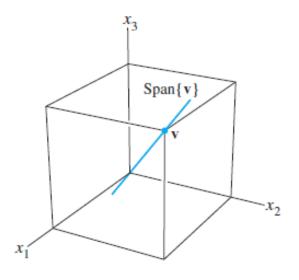
Ex. Convert
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 4 \\ -x_1 + 5x_2 + 2x_3 = 6 \text{ to a vector equation.} \\ 2x_1 - x_2 - 5x_3 = 2 \end{cases}$$

<u>Def.</u> If $\mathbf{v}_1, ..., \mathbf{v}_p$ are vectors in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is denoted Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ and is called the <u>subset of \mathbb{R}^n spanned by $\mathbf{v}_1, ..., \mathbf{v}_p$.</u>

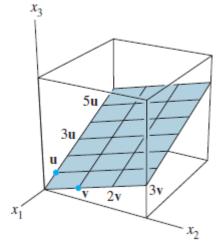
That is, $\text{Span}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is the set of all vectors that can be written $c_1\mathbf{v}_1 + ... + c_p\mathbf{v}_p$, where $c_1,...,c_p$ are scalars.

In \mathbb{R}^3 :

Span{v} is the line through the origin and v:



Span $\{u,v\}$ is the plane through the origin, u and v:



Ex. Determine if **b** is in the plane generated by

Span $\{\mathbf{a}_1,\mathbf{a}_2\}$.

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$$

The Matrix Equation

Let A be the matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$, where each of the \mathbf{a} 's is a vector in \mathbb{R}^m , and let \mathbf{x} be a vector in \mathbb{R}^n . Then the product $A\mathbf{x}$ is the linear combination of the columns of A using the entries of \mathbf{x} as weights:

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n$$

$$\underline{Ex.} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = 4$$
$$-5x_2 + 3x_3 = 1$$

Vector equation:
$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Matrix Equation:
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Linear systems can be expressed in 3 different ways, we can pick the one that's most convenient.

Ex. Is the equation Ax = b consistent for all

possible
$$b_1$$
, b_2 , and b_3 ?
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Thm. Let A be an $m \times n$ matrix and \mathbf{b} be a vector in \mathbb{R}^m . The following are equivalent (all are true or none are true):

- i. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} in \mathbb{R}^m .
- ii. Every **b** in \mathbb{R}^m is a linear combination of the columns of A
- iii. The columns of A span \mathbb{R}^m (every vector in \mathbb{R}^m is in the span of the columns of A)
- iv. A has a pivot position in every row

Note: This is about the coefficient matrix, A, of a linear system, not the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$.

Ex. Can A**x** = **b** be solved for any **b** in \mathbb{R}^3 ?

$$A = \begin{bmatrix} 1 & 0 & -1 & 6 \\ 7 & 1 & -1 & 14 \\ 5 & 1 & 1 & 2 \end{bmatrix}$$

Ex. Do the columns of A span \mathbb{R}^3 ?

$$A = \begin{bmatrix} 7 & 1 & 2 \\ 5 & -1 & 6 \\ -2 & 0 & 4 \end{bmatrix}$$

Let's do these again using dot product:

$$\underline{\text{Ex.}} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}$$

$$\underline{\text{Ex.}} \begin{bmatrix} 2 & -3 \\ 8 & 0 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

The <u>identity matrix</u> is a square matrix that has ones on its main diagonal and zeroes as every other entry $\begin{bmatrix}
1 & 0 & 0 & 0
\end{bmatrix}$

$$I_4 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Multiplying any vector by *I* results in the same vector

$$I_{\mathbf{X}} = \mathbf{x}$$