$\underline{\text { Solution Sets of Linear Systems }}$

The linear system $A \mathbf{x}=\mathbf{0}$ is called homogeneous.

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

This system always has at least 1 solution, where all the x 's are 0 . This is called the trivial solution.
Thm. The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.
\rightarrow So the homogeneous solution has either one trivial solution or infinitely many solutions.

Ex. Describe the solution set of $3 x_{1}+5 x_{2}-4 x_{3}=0$

$$
\begin{aligned}
-3 x_{1}-2 x_{2}+4 x_{3} & =0 \\
6 x_{1}+x_{2}-8 x_{3} & =0
\end{aligned}
$$

1 free variable resulted in a line in \mathbb{R}^{3}.

Ex. Describe the solution set of $10 x_{1}-3 x_{2}-2 x_{3}=0$

2 free variables resulted in a plane in \mathbb{R}^{3}.

If A has no free variables:

- Trivial solution
- The point $\mathbf{0}$ in \mathbb{R}^{3}

If A has 1 free variable:

- A line in \mathbb{R}^{3} that passes through the origin
- Can be described parametrically by $\mathbf{x}=t \mathbf{v}_{1}$.

If A has 2 free variables:

- A plane in \mathbb{R}^{3} that passes through the origin
- Can be described parametrically by $\mathbf{x}=s \mathbf{v}_{1}+t \mathbf{v}_{2}$.
\rightarrow Note this represents $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$
When we write our solution sets in this form, it is called the parametric vector form.

If $\mathbf{b} \neq \mathbf{0}$, the linear system $A \mathbf{x}=\mathbf{b}$ is called non-homogeneous.

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Ex. Describe the solution set of $3 x_{1}+5 x_{2}-4 x_{3}=7$

$$
\begin{aligned}
-3 x_{1}-2 x_{2}+4 x_{3} & =-1 \\
6 x_{1}+x_{2}-8 x_{3} & =-4
\end{aligned}
$$

$A \mathbf{x}=\mathbf{b}$ has no solutions if:

- $A \mathbf{x}=\mathbf{b}$ is inconsistent

$$
A \mathbf{x}=\mathbf{b} \text { has } 1 \text { solution if: }
$$

- The corresponding homogeneous system had only the trivial solution

$\underline{A} \mathbf{x}=\mathbf{b}$ has infinitely many solutions if:

- The corresponding homogeneous system had infinitely many solutions
- Solutions would be 1 vector plus a linear combination of vectors that satisfy the corresponding homogeneous system.
- $\mathbf{x}=\mathbf{p}+t \mathbf{v}_{1} \rightarrow$ a line not through the origin
- $\mathbf{x}=\mathbf{p}+s \mathbf{v}_{1}+t \mathbf{v}_{2} \rightarrow$ a plane not through the origin

Prove the previous result:

Linear Independence

A set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ is linearly dependent if there exist constants $x_{1}, x_{2}, \ldots, x_{p}$ (not all zero) such that

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\ldots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

\rightarrow This equation is called a linear dependence relation.
\rightarrow The set is linearly independent if

$$
x_{1}=x_{2}=\ldots=x_{p}=0 \text { is the only solution. }
$$

Ex. Determine if the vectors are dependent. Find
a linear dependence relation. $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\ldots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

\rightarrow Note this is the same as our homogeneous equation $A \mathbf{x}=\mathbf{0}$, where the vectors are the columns of A.

Thm. The following are equivalent:
i. $\quad A \mathbf{x}=\mathbf{0}$ has only the trivial solution
ii. The columns of A are linearly independent
iii. The linear system with augmented matrix
$\left[\begin{array}{ll}A & 0\end{array}\right]$ has no free variables
iv. A has a pivot in each column

Ex. Determine if the vectors are dependent.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
8
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
-1 \\
0
\end{array}\right]
$$

Ex. Determine if the vectors are dependent.
a. $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}6 \\ 2\end{array}\right]$
b. $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}6 \\ 2\end{array}\right]$

Two vectors are linearly dependent if one is a multiple of the other.

Note: This doesn't work for more than 2
vectors!

Thm. A set of two or more vectors is linearly dependent if and only if at least one is a linear combination of the others.

Ex. Describe the set spanned by \mathbf{u} and \mathbf{v}. Explain why a vector \mathbf{w} is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ if and only if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent. $\lceil 3\rceil$

$$
\mathbf{u}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
1 \\
6 \\
2
\end{array}\right]
$$

Thm. If a set contains more vectors than there are entries in each vector, then the set is dependent.
Ex. Show that the set is dependent. $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}4 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\}$

Thm. If a set contains the zero vector, then the set is dependent.

Ex. Determine if the set is dependent.
a. $\left\{\left[\begin{array}{l}1 \\ 7 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 9\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 8\end{array}\right]\right\}$
b. $\left\{\left[\begin{array}{l}1 \\ 7 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right]\right\}$

