Intro to Linear Transformations

Def. A function f from set A to set B is a relation that assigns to each element x in set A exactly one element y in set B.

$$
\begin{gathered}
{\left[\begin{array}{llll}
4 & -3 & 1 & 3 \\
2 & 0 & 5 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right]} \\
A \mathbf{x}=\mathbf{b}
\end{gathered}
$$

We can think of A as transforming \mathbf{x} in \mathbb{R}^{4} to \mathbf{b} in \mathbb{R}^{2}.

A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
\mathbb{R}^{n} is the domain
\mathbb{R}^{m} is the codomain
The set of all $T(\mathbf{x})$ is called the range
\rightarrow The range is a subset of the codomain
The rest of this section will focus on mappings associated with matrix multiplication

$$
\mathbf{x} \mapsto A \mathbf{x}
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. If $\mathbf{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, find $T(\mathbf{u})$.

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
b. If $\mathbf{b}=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$, find an \mathbf{x} whose image under T is \mathbf{b}.

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
c. If $\mathbf{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$, find an \mathbf{x} whose image under T is \mathbf{c}.

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

Ex. Define a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
d. Find all \mathbf{x} that are mapped into the zero vector.

$$
A=\left[\begin{array}{ll}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

Ex. Find the image of \mathbf{x} under the transformation $\mathbf{x} \mapsto A \mathbf{x}$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
3 \\
8 \\
4
\end{array}\right]
$$

This projects the point onto the $x_{1} x_{2}$-plane.

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}.
\rightarrow The range makes up the entire codomain
\rightarrow Every vector in \mathbb{R}^{m} is the output at least once

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if every \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.
\rightarrow Every vector in the range is an output exactly once
\rightarrow Not all vectors in \mathbb{R}^{m} are outputs
$\rightarrow T(\mathbf{x})$ has either a unique solution or no solution

Ex. Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Does T map \mathbb{R}^{4} onto \mathbb{R}^{3} ? Is T one-to-one?

$$
A=\left[\begin{array}{llll}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

We remember properties of vector/matrix/scalar addition and multiplication:
Distributive: $A(\mathbf{u}+\mathbf{v})=A(\mathbf{u})+A(\mathbf{v})$

$$
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})
$$

Commutative: $A(c \mathbf{u})=c A(\mathbf{u})$

$$
T(c \mathbf{u})=c T(\mathbf{u})
$$

These lead to the properties of a linear transformation T.

For any linear transformation,

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
$$

In particular, $T(\mathbf{0})=\mathbf{0}$.
\rightarrow This can be generalized to be true for any number of vectors. This is called the superposition principle.

Ex. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=3 \mathbf{x}$. Show that T is a linear transformation.

What does this transformation represent graphically?

Ex. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \mathbf{x}$.
Find $T(\mathbf{u})$:
a) $\mathbf{u}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
b) $\mathbf{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

What does this transformation represent graphically?

Matrix of a Linear Transformation

We have been talking about different linear transformations, not just ones that are matrix multiplication.

In fact, all linear transformations can be represented by a matrix multiplication.

To find the matrix, we will be using the columns of I_{n}, which we will call $\mathbf{e}_{1}, \mathbf{e}_{2}$, etc.

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

These are called the standard basis vectors of \mathbb{R}_{3}.

Ex. Suppose T is a linear transformation such that $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}5 \\ -7 \\ 2\end{array}\right]$ and $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}-3 \\ 8 \\ 0\end{array}\right]$. Describe the image of an arbitrary $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Thm. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, there is a unique $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x}.
\rightarrow The columns of A will be the transformation of the columns of I. In other words:

$$
A=\left[\begin{array}{lll}
T\left(\mathbf{e}_{1}\right) & \ldots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

\rightarrow This is called the standard matrix for the linear transformation.
\rightarrow Please note mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ requires a matrix that is $m \times n$.

Ex. Find the standard matrix for the transformation that rotates each point in \mathbb{R}^{2} counterclockwise about the origin through an angle φ.
p. 73-75 has the standard matrices for several common geometric linear transformations.
\rightarrow Even more transformations come from the composition of transformations.

Ex. Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Does T map \mathbb{R}^{4} onto \mathbb{R}^{3} ? Is T one-to-one?

$$
A=\left[\begin{array}{llll}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Thm. Consider the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. The following are equivalent:
i. $\quad T$ is one-to-one.
ii. A has a pivot in each column.
iii. A has no free variables.
iv. The columns of A are linearly independent.
v. The equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.
\rightarrow This links us with all of the equivalent statements from last class.

Thm. Consider the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. The following are equivalent:
i. $\quad T$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.
ii. A has a pivot in each row.
iii. The columns of A span \mathbb{R}^{m}.

Ex. Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Does T map \mathbb{R}^{2} onto \mathbb{R}^{3} ? Is T one-to-one?

Ex. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2},-3 x_{1}+x_{2}, 2 x_{1}-3 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=(0,-1,4)$.

