
Intro to Linear Transformations

Def. A function f from set A to set B is a relation 
that assigns to each element x in set A exactly 
one element y in set B.
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Set B

Codomain
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We can think of A as transforming x in ℝ4 
to b in ℝ2.



A transformation (or function or mapping) T 
from ℝ𝑛𝑛 to ℝ𝑚𝑚 is a rule that assigns each vector 
x in ℝ𝑛𝑛 a vector T(x) in ℝ𝑚𝑚.
T : ℝ𝑛𝑛 → ℝ𝑚𝑚

ℝ𝑛𝑛 is the domain
ℝ𝑚𝑚 is the codomain
The set of all T(x) is called the range
The range is a subset of the codomain
The rest of this section will focus on mappings 
associated with matrix multiplication

𝐱𝐱 ↦ 𝐴𝐴𝐱𝐱



Ex. Define a transformation T : ℝ2 → ℝ3 by 
T(x) = Ax.

a. If u = 2
−1 , find T(u).
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Ex. Define a transformation T : ℝ2 → ℝ3 by      
T(x) = Ax.

b. If b = 
3
2
−5

, find an x whose image under T is b.
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Ex. Define a transformation T : ℝ2 → ℝ3 by      
T(x) = Ax.

c. If c = 
3
2
5

, find an x whose image under T is c.
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Ex. Define a transformation T : ℝ2 → ℝ3 by      
T(x) = Ax.
d. Find all x that are mapped into the zero vector.

1 3
3 5

1 7
A

− 
 =  
−  



Ex. Find the image of x under the transformation 
𝐱𝐱 ↦ 𝐴𝐴𝐱𝐱. 1 0 0 3

0 1 0 , 8
0 0 0 4
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This projects the point onto the x1x2-plane.



A mapping T : ℝ𝑛𝑛 → ℝ𝑚𝑚 is onto ℝ𝑚𝑚 if every b in 
ℝ𝑚𝑚 is the image of at least one x in ℝ𝑛𝑛.
The range makes up the entire codomain
Every vector in ℝ𝑚𝑚 is the output at least once



A mapping T : ℝ𝑛𝑛 → ℝ𝑚𝑚 is one-to-one if every b 
in ℝ𝑚𝑚 is the image of at most one x in ℝ𝑛𝑛.
Every vector in the range is an output exactly 

once
Not all vectors in ℝ𝑚𝑚 are outputs
T(x) has either a unique solution or no solution



Ex. Define T : ℝ4 → ℝ3 by T(x) = Ax.  Does T 
map ℝ4 onto ℝ3?  Is T one-to-one?
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We remember properties of vector/matrix/scalar 
addition and multiplication:
Distributive:  A(u + v) = A(u) + A(v)

Commutative:  A(cu) = cA(u)

These lead to the properties of a linear 
transformation T.

T(u + v) = T(u) + T(v)

T(cu) = cT(u)



For any linear transformation,
T(cu + dv) = cT(u) + dT(v)

In particular, T(0) = 0.
 This can be generalized to be true for any 
number of vectors.  This is called the 
superposition principle.



Ex. Define T : ℝ2 → ℝ2 by T(x) = 3x.  Show that 
T is a linear transformation.

What does this transformation represent graphically?



Ex. Define T : ℝ2 → ℝ2 by T(x) = 0 −1
1 0 x.  

Find T(u):

a) 

b) 

What does this transformation represent graphically?
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Matrix of a Linear Transformation

We have been talking about different linear 
transformations, not just ones that are matrix 
multiplication.
In fact, all linear transformations can be 
represented by a matrix multiplication.



To find the matrix, we will be using the 
columns of In, which we will call e1, e2, etc.

These are called the standard basis vectors 
of ℝ3.

3 1 2 3

1 0 0 1 0 0
0 1 0 , 0 , 1 , 0
0 0 1 0 0 1
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Ex. Suppose T is a linear transformation such that 

𝑇𝑇 𝐞𝐞1 =
5
−7
2

 and 𝑇𝑇 𝐞𝐞2 =
−3
8
0

.  Describe the 

image of an arbitrary 𝐱𝐱 =
𝑥𝑥1
𝑥𝑥2 .



Thm. If T:ℝ𝑛𝑛 → ℝ𝑚𝑚 is a linear transformation, there 
is a unique 𝑚𝑚 × 𝑛𝑛 matrix A such that T(x) = Ax for 
all x.  
The columns of A will be the transformation of 

the columns of I.  In other words:
A = [T(e1)   …   T(en)]

This is called the standard matrix for the linear 
transformation.

Please note mapping ℝ𝑛𝑛 → ℝ𝑚𝑚 requires a matrix 
that is 𝑚𝑚 × 𝑛𝑛.



Ex. Find the standard matrix for the transformation 
that rotates each point in ℝ2 counterclockwise 
about the origin through an angle 𝜑𝜑.



p. 73-75 has the standard matrices for several 
common geometric linear transformations.
 Even more transformations come from the 
composition of transformations.



Ex. Define T : ℝ4 → ℝ3 by T(x) = Ax.  Does T 
map ℝ4 onto ℝ3?  Is T one-to-one?

1 4 8 1
0 2 1 3
0 0 0 5
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Thm. Consider the linear transformation T : ℝ𝑛𝑛 → ℝ𝑚𝑚 
with standard matrix A.  The following are equivalent:
i.  T is one-to-one.
ii.  A has a pivot in each column.
iii.  A has no free variables.
iv. The columns of A are linearly independent.
v. The equation T(x) = 0 has only the trivial solution. 
 This links us with all of the equivalent  statements from 
last class.



Thm. Consider the linear transformation T : ℝ𝑛𝑛 → ℝ𝑚𝑚 
with standard matrix A.  The following are equivalent:
i.  T maps ℝ𝑛𝑛 onto ℝ𝑚𝑚.
ii.  A has a pivot in each row.
iii. The columns of A span ℝ𝑚𝑚.



Ex. Let T(x1,x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).  
Does T map ℝ2 onto ℝ3?  Is T one-to-one?



Ex. Let T: ℝ2 → ℝ3 be a linear transformation such that 
T(x1,x2) = (2x1 – x2, -3x1 + x2, 2x1 – 3x2).  Find x such that 
T(x) = (0,-1,4).
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