Determinant of a Matrix

The determinant of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
is given by

$$
\operatorname{det} A=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

We can only find the determinant of a square matrix

Ex. Find the determinant

a. $\left|\begin{array}{cc}2 & -3 \\ 1 & 2\end{array}\right|$
b. $\left|\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right|$

To find the determinant of a larger matrix, we will use minors and cofactors

The minor of entry $a_{i j}$, written $M_{i j}$, is the determinant of the matrix found by removing row i and column j of matrix A The cofactor of entry $a_{i j}$, written $C_{i j}$, is

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Ex. Find some minors and cofactors of $A=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 0 & 1\end{array}\right]$

The determinant of a square matrix is the sum of the entries of any row (or column) multiplied by the corresponding cofactors

Ex. Find the determinant of $A=\left[\begin{array}{ccc}0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1\end{array}\right]$

Ex. Find the determinant of $A=\left[\begin{array}{ccc}-2 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 4\end{array}\right]$

Ex. Find the determinant of $A=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 4 \\ -1 & 1 & 3 & 2 & 1 \\ 0 & 2 & 0 & 3 & -2 \\ 3 & 4 & 0 & 2 & 3 \\ 1 & -2 & 0 & 2 & 1\end{array}\right]$

Ex. Find the determinant of $A=\left[\begin{array}{lll}5 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 2\end{array}\right]$

The determinant of a triangular matrix is the product of the entries on the main diagonal.

