Properties of Determinants

Ex. Find the determinant
a. $\left|\begin{array}{cc}1 & 2 \\ 2 & -6\end{array}\right|$ b. $\left|\begin{array}{cc}2 & -6 \\ 1 & 2\end{array}\right|$

If two rows are interchanged, the determinant changes signs.

Ex. Find the determinant
a. $\left|\begin{array}{cc}1 & 2 \\ 2 & -6\end{array}\right|$
b. $\left|\begin{array}{cc}1 & 2 \\ 1 & -3\end{array}\right|$

If a row is multiplied by a scalar, the determinant is multiplied by the scalar (factor out of row).

Ex. Find the determinant
a. $\left|\begin{array}{cc}1 & 2 \\ 2 & -6\end{array}\right| \quad$ b. $\left|\begin{array}{cc}1 & 2 \\ 0 & -10\end{array}\right|$

If a row is replaced by its sum with a multiple of another row, the determinant doesn't change.

Ex. Find the determinant
a. $\left|\begin{array}{cc}1 & 3 \\ 2 & -6\end{array}\right|$
b. $\left|\begin{array}{cc}1 & 2 \\ 3 & -6\end{array}\right|$
$\operatorname{det} A^{\mathrm{T}}=\operatorname{det} A$
[These properties also work when doing column operations.] We can make determinants easer to evaluate by using row operations (especially 4×4). $\quad\left[\begin{array}{lll}-2 & 2 & 3\end{array}\right]$
Ex. Find the determinant of $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 4\end{array}\right]$

Ex. Find the determinant of $A=\left[\begin{array}{cccc}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right]$

Ex. Find the determinant of $A=\left[\begin{array}{cccc}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 3 & 4\end{array}\right]$

A square matrix is invertible (and everything that goes with that) iff the determinant is non-zero.

Thm. Invertible Matrix Theorem
Let A be $n \times n$. The following are equivalent:
i. $\quad A$ is invertible
ii. A is row equivalent to I.
iii. A has n pivot positions (one in each row and column).
iv. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
v. The columns of A are linearly independent.
vi. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
vii. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}.
viii. The columns of A span \mathbb{R}^{n}.
ix. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
x. The determinant of A is not zero

Ex. Verify that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$

$$
A=\left[\begin{array}{ll}
6 & 1 \\
3 & 2
\end{array}\right], B=\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]
$$

Caution: $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$

Ex. Compute det (B^{3})

$$
B=\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]
$$

Ex. Evaluate $\operatorname{det}\left(\left[\begin{array}{cccc}7 & 8 & 1 & 0 \\ 0 & 5 & 2 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1\end{array}\right] \cdot\left[\begin{array}{cccc}4 & 0 & 0 & 0 \\ 6 & 3 & 0 & 0 \\ 1 & 0 & 2 & 6 \\ 0 & 0 & 1 & 1\end{array}\right]\right)$

Applications of Determinants

It is possible to solve a system of equations by finding a bunch of determinants:

Cramer's Rule

Consider the problem of solving $A \mathbf{x}=\mathbf{b}$. Let $A_{1}(\mathbf{b})$ be the matrix obtained from A by replacing column 1 with \mathbf{b}. Then

$$
x_{1}=\frac{\operatorname{det} A_{1}(\mathbf{b})}{\operatorname{det} A}
$$

This process can be repeated to solve for the other variables.

$$
\text { Ex. Solve }\left\{\begin{array}{l}
4 x_{1}-2 x_{2}=10 \\
3 x_{1}-5 x_{2}=11
\end{array}\right.
$$

Generally, it's quicker to do row reduction.

Thm. Let A be $n \times n$ and let $C_{i j}$ be the cofactor for entry $a_{i j}$. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{\mathrm{T}}
$$

C^{T} is called the adjugate (or classical adjoint) or A, and can be denoted adj A.

Generally, it's quicker to use the other method for finding A^{-1}.

Ex. Let $A=\left(\begin{array}{ccc}2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1\end{array}\right)$, find A^{-1}.

Thm. If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$.
If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.

Ex. Find the area of the parallelogram with vertices $(-2,-2)$, $(0,3),(4,-1)$, and $(6,4)$.

Ex. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,3,0),(-2,0,2)$, and ($-1,3,-1$).

Vector Spaces

We are going to start working with some abstract sets called vector spaces.

- Although everything we discuss can apply to vectors in \mathbb{R}^{2} and \mathbb{R}^{3}, we will also be more general
- On the next slide, \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in vector space V and c and d can be any real number.

Def. A vector space contains objects (called vectors) on which are defined two operations, addition and scalar multiplication, which are subject to 10 axioms (rules):

1) Closed under addition $\rightarrow \mathbf{u}+\mathbf{v}$ is in V
2) Closed under scalar multiplication $\rightarrow c \mathbf{u}$ is in V
3) Addition is commutative $\rightarrow \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
4) Addition is associative $\rightarrow(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
5) Zero vector \rightarrow There is $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
6) Opposite vector \rightarrow There is $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
7) Distributive $\rightarrow c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8) Distributive $\rightarrow(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9) Scalar multiplication is associative $\rightarrow c(d \mathbf{u})=(c d) \mathbf{u}$
10) Scalar multiplication by $1 \rightarrow 1 \mathbf{u}=\mathbf{u}$

Ex. Define S as the space of all doubly infinite sequences of real numbers:

$$
\left\{y_{k}\right\}=\left(\ldots, y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, \ldots\right)
$$

Show that $\$$ is a vector space.

Ex. Define \mathbb{P}_{n} as the space of polynomials of degree at most n.

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots a_{n} t^{n}
$$

Show that \mathbb{P}_{n} is a vector space.

Ex. Define Π_{n} as the space of polynomials of degree n.

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots a_{n} t^{n}, a_{n} \neq 0
$$

Show that Π_{n} is not a vector space.

Ex. Define \mathcal{F} as the space of real valued functions. Show that \mathcal{F} is a vector space.

Ex. Define \mathbb{Z}^{2} as the space of vectors in \mathbb{R}^{2} with integer elements.

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \text {, where } a \text { and } b \text { are integers }
$$

Show that \mathbb{Z}^{2} is not a vector space.

Def. A subspace of a vector space V is a subset H of V that satisfies 3 rules:

1) H is closed under addition \rightarrow If \mathbf{u} and \mathbf{v} are in H, then $\mathbf{u}+\mathbf{v}$ is in H.
2) H is closed under scalar multiplication \rightarrow If \mathbf{u} is in H, then $c \mathbf{u}$ is in H
3) Zero vector \rightarrow The zero vector of V is in H.

Every subspace is a vector space in its own right. However, since it is a subset of an already-established vector space, not all axioms need to be verified.
$\rightarrow \mathbb{P}_{n}$ is a subspace of \mathcal{F}.
$\rightarrow \mathbb{Z}^{2}$ is not a subspace of \mathbb{R}^{2}

Ex. \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}. However, consider the set that looks and acts like \mathbb{R}^{2}.

$$
H=\left\{\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right]: a, b \text { are real }\right\}
$$

Show that H is a subspace of \mathbb{R}^{3}.

Ex. Consider the zero subspace, consisting only of the zero vector of a vector space V.
$\{0\}$
Show that this is a subspace of V.
 $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a subspace of V.

- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are in a vector space V, Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is called the subspace spanned by the vectors.
- Given any subspace H, a spanning set for H is a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ such that $\mathrm{H}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$
- Consider \mathbb{P}_{n} as a subspace of \mathcal{F}. The set $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a spanning set for \mathbb{P}_{n}.

Ex. Consider the set of vectors

$$
H=\left\{\left[\begin{array}{c}
a-3 b \\
b-a \\
a \\
b
\end{array}\right]: a, b \text { are real }\right\}
$$

Show that H is a subspace of \mathbb{R}^{4}.

