Some Subspaces

Ex. Solve the equation $A \mathbf{x}=\mathbf{0}$ for $A=\left[\begin{array}{ccccc}-3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{array}\right]$

The set of solutions to this system form a subspace because this set is the span of the vectors.
Def. The null space of matrix A, written $\operatorname{Nul} A$, is the set of solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

$$
\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}
$$

Note that this only works for the homogeneous equation.
\rightarrow The solution set for $A \mathbf{x}=\mathbf{b}$ doesn't include the zero vector.
\rightarrow Also, $A \mathbf{x}=\mathbf{b}$ may have no solution

Ex. For $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, determine if $\mathbf{u}=\left[\begin{array}{c}5 \\ 3 \\ -2\end{array}\right]$ is in the null space of A.

Another description:

Consider the linear transformation $\mathbf{x} \longmapsto A \mathbf{x}$, $\mathrm{Nul} A$ is the set of all vectors that are mapped to the zero vector.

There's no obvious relation between the entries of A and the vectors in $\mathrm{Nul} A$ (or its spanning set). Another subspace, which has a more obvious connection, is the column space of A.
Def. The column space of A, written $\operatorname{Col} A$, is the subspace that is the span of the columns of A.

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right] \text {, a vector } \mathbf{b} \text { is in } \mathrm{Col} A \text { if } \\
& \mathbf{b}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n} \\
& \{\mathbf{b}: A \mathbf{x}=\mathbf{b}\}
\end{aligned}
$$

For the linear transformation $\mathbf{x} \longmapsto A \mathbf{x}, \operatorname{Col} A$ is the range.

Ex. Find a matrix A such that $W=\operatorname{Col} A$.

$$
W=\left\{\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right]: a \text { and } b \text { are real numbers }\right\}
$$

Ex. Consider the 3×4 matrix A.
a. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k} for what value of k ?
b. $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k} for what value of k ?

Ex. For $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, determine if $\mathbf{u}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$ is in the column space of A.

Ex. For $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, find a nonzero vector in $\operatorname{Col} A$ and a nonzero vector in $\operatorname{Nul} A$.

$\operatorname{Nul} A$ and $\operatorname{Col} A$ are quite different, though we will find a connection between them next class.

Contrast Between NuI A and $\operatorname{Col} A$ for an $m \times n$ Matrix A

Nu 14	$\mathrm{Col} A$
1. $\mathrm{Nul} A$ is a subspace of \mathbb{R}^{n}.	1. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
2. $\operatorname{Nul} A$ is implicitly defined; that is, you are given only a condition $(A \mathbf{x}=0)$ that vectors in $\mathrm{Nul} A$ must satisfy.	2. $\operatorname{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
3. It takes time to find vectors in $\operatorname{Nul} A$. Row operations on $\left[\begin{array}{ll}A & 0\end{array}\right]$ are required.	3. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.	4. There is an obvious relation between $\operatorname{Col} A$ and the entries in A, since each column of A is in $\operatorname{Col} A$.
5. A typical vector \mathbf{v} in $\mathrm{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.	5. A typical vector \mathbf{v} in $\operatorname{Col} A$ has the property that the equation $A \mathbf{x}=\mathbf{v}$ is consistent.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in $\operatorname{Nul} A$. Just compute $A \mathbf{v}$.	6. Given a specific vector \mathbf{v}, it may take time to tell if \mathbf{v} is in $\operatorname{Col} A$. Row operations on $\left[\begin{array}{ll}A & \mathbf{v}\end{array}\right]$ are required.
7. $\operatorname{Nul} A=\{0\}$ if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.	7. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.
8. $\operatorname{Nul} A=\{0\}$ if and only if the linear transformation $\mathrm{x} \mapsto A \mathrm{x}$ is one-to-one.	8. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

When considering more abstract vector spaces, we discuss the linear transformation rather than the matrix.
$\underline{\text { Def. A linear transformation } T \text { from a vector space }}$ V to a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that
i. $\quad T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
ii. $\quad T(c \mathbf{u})=c T(\mathbf{u})$

The kernel of T is the subspace of V that is mapped to the zero vector in W.
\rightarrow If T is a matrix transformation, this is the null space.
The range of T is the subspace of W of all vectors of the form $T(\mathbf{x})$ for some \mathbf{x} in V.
\rightarrow If T is a matrix transformation, this is the column space.

Ex. An example of an abstract linear transformation would be the derivative.

We can use $C[a, b]$, which is the set of all continuous functions on the interval $[a, b]$.

Ex. Define the linear transformation $T: \mathrm{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{c}\mathbf{p}(0) \\ \mathbf{p}^{\prime}(0)\end{array}\right]$. Find the kernel of T.

Linear Independence

A set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ is linearly dependent if there exist constants $c_{1}, c_{2}, \ldots, c_{p}$ (not all zero) such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

\rightarrow This equation is called a linear dependence relation.
\rightarrow If the set is dependent, one of the vectors can be written as the linear combination of the others.
\rightarrow The set is linearly independent if $c_{1}=c_{2}=\ldots=c_{p}=0$ is the only solution.
\rightarrow When we saw this before, the vectors were in \mathbb{R}^{n} and we looked at the equation $A \mathbf{x}=\mathbf{0}$.
\rightarrow For abstract vector spaces, we can't rely on that.

Ex. In P , determine if $\mathbf{p}_{1}(t)=1, \mathbf{p}_{2}(t)=t, \mathbf{p}_{3}(t)=t^{2}$, and $\mathbf{p}_{4}=(t+3)^{2}$ are linearly dependent.

Ex. In $C[0,1]$, determine if $\{\cos t, \sin t\}$ is linearly dependent.

Ex. In $C[0,1]$, show that $\left\{\cos t, \sin t, \sin \left(t+\frac{\pi}{4}\right)\right\}$ is linearly dependent.

Def. Let H be a subspace of a vector space V. A set of vectors \mathcal{B} in V is a basis of H if
i. The vectors in \mathcal{B} are linearly independent
ii. The vectors in \mathcal{B} span H.

This could be considered the most "efficient" way to define the subspace H.

The columns of I_{n} are called the standard basis for \mathbb{R}^{n}.

In \mathbb{R}^{3}, the standard basis vectors are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The set $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is called the standard basis for P_{n}.

Ex. The vectors are dependent. If $H=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, identify a basis for H.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

A basis is a spanning set that is as small as possible.

Ex. Let $H=\operatorname{span}\left\{1, t, t^{2},(t+3)^{2}\right\}$, find a basis.

Ex. Let $H=\operatorname{span}\{\cos t, \sin t\}$, find a basis.

Ex. Let $H=\operatorname{span}\left\{\cos t, \sin t, \sin \left(t+\frac{\pi}{4}\right)\right\}$, find a basis.

We previously found vectors that span the null space of a vector $A \rightarrow$ this will be the basis of $\operatorname{Nul} A$.
Ex. Find a basis for Nul B, where $B=\left[\begin{array}{ccccc}1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

It turns out that the pivot columns of a matrix form a basis for the column space of the matrix.
Ex. Find a basis for $\mathrm{Col} A$, where
[This is row equiv. to B.] $\quad\left[\begin{array}{ccccc}1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8\end{array}\right]$

Be careful to use the columns of A, not the reduced form

