Coordinate Systems

Consider the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ in \mathbb{R}^2 , and consider the

standard basis for \mathbb{R}^2 , $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$.

$$\begin{bmatrix} 1 \\ 6 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 6 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 \cdot \mathbf{e}_1 + 6 \cdot \mathbf{e}_2$$

We say that 1 and 6 are the coordinates relative to the standard basis. However, this could be done for any basis of \mathbb{R}^2 .

Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ form a basis for a vector space V. Every vector \mathbf{x} in V is a linear combination of the elements of \mathcal{B} .

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

The weights $c_1, c_2, ..., c_n$ are called the <u>coordinates of x</u> relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of x).

These coordinates can be written
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Ex. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$, and suppose there is some vector \mathbf{x} such that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find \mathbf{x} .

From the earlier example, note that $[\mathbf{x}]_{\mathcal{E}} = \mathbf{x}$.

Ex. Consider the basis $\mathcal{B} = \{1, t, t^2\}$ for \mathbb{P}_2 . Find the \mathcal{B} -coordinates of $\mathbf{x} = (t+3)^2$.

Ex. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ for \mathbb{R}^2 . Find the \mathcal{B} -coordinates of $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

In the previous example, we could form the matrix $P_{\mathcal{B}}$ whose columns are the vectors in \mathcal{B} :

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2]$$

Then solving the equation $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2$ becomes

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

We call $P_{\mathcal{B}}$ the change of coordinates matrix from \mathcal{B} to the standard basis: $[\mathbf{x}]_{\mathcal{B}} \mapsto \mathbf{x}$

Since \mathcal{B} is a basis, $P_{\mathcal{B}}$ is an invertible matrix, so

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

This maps the other direction: $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$

In the earlier example, we found the \mathcal{B} -coordinates of

$$\mathbf{x} = (t+3)^2 \text{ were } \begin{bmatrix} 9 \\ 6 \\ 1 \end{bmatrix}$$

This method of finding coordinates allows us to map an abstract vector space, such as \mathbb{P}_2 , to the more concrete vector space \mathbb{R}^3 .

- → This mapping is one-to-one and onto.
- → This mapping is linear:

$$[c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_n\mathbf{u}_n]_{\mathcal{B}} = c_1[\mathbf{u}_1]_{\mathcal{B}} + c_2[\mathbf{u}_2]_{\mathcal{B}} + \dots + c_n[\mathbf{u}_n]_{\mathcal{B}}$$

Any one-to-one linear transformation from a vector space V onto a vector space W is called an <u>isomorphism</u> and the vector spaces are said to be <u>isomorphic</u>.

- → This means that they may look and feel completely different, but they act the same and are indistinguishable.
- \rightarrow So \mathbb{P}_2 is isomorphic to \mathbb{R}^3 .
- \rightarrow In general, any vector space whose basis has n elements is isomorphic to \mathbb{R}^n .

Ex. Show that $1 + 2t^2$, $4 + t + 5t^2$, and 3 + 2t are linearly dependent in \mathbb{P}_2 .

$$\underline{\text{Ex. Let }} \mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}, \mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}.$$

Then \mathcal{B} is a basis for $H = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Determine if \mathbf{x} is in H and, if it is, find the \mathcal{B} -coordinate for \mathbf{x} .

In the previous example, H represented a plane in \mathbb{R}^3 .

 \rightarrow We've just shown that this subspace of \mathbb{R}^3 is isomorphic to \mathbb{R}^2 .

Dimensions of a Vector Space

If a basis for a vector space V contains n vectors, we say that V is <u>finite-dimensional</u> and the <u>dimension</u> of V, written dim V, is n.

- The dimension of the zero subspace $\{0\}$ is defined as 0.
- If *V* is not spanned by a finite set, we say *V* is <u>infinite-dimensional</u>.
- If dim V = n, then V is isomorphic with \mathbb{R}^n .

Ex. The dimension of \mathbb{P}_2 is 3 because its basis is $\{1, t, t^2\}$.

 $\underline{Ex.}$ \mathbb{P} is infinite-dimensional.

Ex. Find the dimension for
$$H = \text{span} \left\{ \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$
.

Ex. Find the dimension for
$$H = \begin{cases} \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} \end{cases}$$
.

Ex. Find the dimension for $K = \text{span}\{2t^2 + 2, (t+1)^2, t\}$.

Consider the subspaces of \mathbb{R}^3

0-dimensional: Only the zero subspace

1-dimensional: Multiples of a single vector, so lines through the origin

2-dimensional: Linear combinations of two independent vectors, so planes through the origin

3-dimensional: All of \mathbb{R}^3

Going back to Nul A and Col A

The dimension of Nul A is the number of free variables of the equation $A\mathbf{x} = \mathbf{0}$.

The dimension of Col A is the number of pivot columns of A.

Ex. Find the dimensions of Nul A and Col A.

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Before we can talk about rank, we need to define the <u>row</u> <u>space</u> of A, denoted Row A, and the subspace that is the span of the rows of A.

Ex. The row space of
$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$
 is

a subspace of \mathbb{R}^5 , and we can write the vectors horizontally if we wish.

Note: Row $A = \text{Col } A^{\text{T}}$

Thm. If two matrices A and B are row equivalent, their row spaces are the same. In addition, if B is in echelon form, its nonzero rows form a basis for the row space of A as well as B.

• This works because row operations that would result in *B* are just linear combinations of the rows of *A*

Ex. Find the bases for Row A, Col A, and Nul A for A =

[-2	- 5	8	0	-17
1	3	- 5	1	5
3	11	-19	7	1
l 1	7	-13	5	-3

Some observations:

- The basis for Col A used entries of A, but the bases for Nul A and Row A had no connection to the entries of A.
- Although the first 3 rows of the echelon form are independent, we can't assume the same is true of A.

<u>Def.</u> The <u>rank</u> of a matrix is the dimension of Col *A*.

<u>Thm.</u> Rank Theorem

- Col A and Row A have the same dimensions
- If A is an $m \times n$ matrix, Rank $A + \dim (\text{Nul } A) = n$ Why are these true?

Ex. If A is 7×9 with a two-dimensional null space, what is the rank of A?

Ex. Could a 6×9 matrix have a two-dimensional null space?

Ex. Suppose a homogeneous system of equations with 18 equations and 20 variables if found to have a two-dimensional set of solutions. Does every associated non-homogeneous system have a solution?

Thm. Invertible Matrix Theorem

Let A be $n \times n$. The following are equivalent:

- i. A is invertible
- ii. A is row equivalent to I.
- iii. A has n pivot positions (one in each row and column).
- iv. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- v. The columns of A are linearly independent.
- vi. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- vii. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for all \mathbf{b} .
- viii. The columns of A span \mathbb{R}^n .
- ix. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- x. The determinant of A is not zero

xi. Col
$$A = \mathbb{R}^n$$

xii. Row
$$A = \mathbb{R}^n$$

xiii.Nul A is the zero subspace