Coordinate Systems

Consider the vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 6\end{array}\right]$ in \mathbb{R}^{2}, and consider the standard basis for $\mathbb{R}^{2}, \mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.

$$
\left[\begin{array}{l}
1 \\
6
\end{array}\right]=1 \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+6 \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=1 \cdot \mathbf{e}_{1}+6 \cdot \mathbf{e}_{2}
$$

We say that 1 and 6 are the coordinates relative to the standard basis. However, this could be done for any basis of \mathbb{R}^{2}.

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ form a basis for a vector space V. Every vector \mathbf{x} in V is a linear combination of the elements of \mathcal{B}.

$$
\mathbf{x}=c_{1} \boldsymbol{b}_{1}+c_{2} \mathbf{b}_{2}+\cdots+c_{n} \mathbf{b}_{n}
$$

The weights $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of \mathbf{x} relative to the basis \mathcal{B} (or the \mathcal{B}-coordinates of \mathbf{x}).
These coordinates can be written $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$

Ex. Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$, and suppose there is some vector \mathbf{x} such that $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$. Find \mathbf{x}.

From the earlier example, note that $[\mathbf{x}]_{\mathcal{E}}=\mathbf{x}$.
Ex. Consider the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}. Find the \mathcal{B} coordinates of $\mathbf{x}=(t+3)^{2}$.

Ex. Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ for \mathbb{R}^{2}. Find the \mathcal{B}-coordinates of $\mathbf{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.

In the previous example, we could form the matrix $P_{\mathcal{B}}$ whose columns are the vectors in \mathcal{B} :

$$
P_{\mathcal{B}}=\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right]
$$

Then solving the equation $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ becomes

$$
\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

We call $P_{\mathcal{B}}$ the change of coordinates matrix from \mathcal{B} to the standard basis: $[\mathbf{x}]_{\mathcal{B}} \mapsto \mathbf{x}$
Since \mathcal{B} is a basis, $P_{\mathcal{B}}$ is an invertible matrix, so

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}{ }^{-1} \mathbf{x}
$$

This maps the other direction: $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$

In the earlier example, we found the \mathcal{B}-coordinates of $\mathbf{x}=(t+3)^{2}$ were $\left[\begin{array}{l}9 \\ 6 \\ 1\end{array}\right]$
This method of finding coordinates allows us to map an abstract vector space, such as \mathbb{P}_{2}, to the more concrete vector space \mathbb{R}^{3}.
\rightarrow This mapping is one-to-one and onto.
\rightarrow This mapping is linear:

$$
\left[c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{n} \mathbf{u}_{n}\right]_{\mathcal{B}}=c_{1}\left[\mathbf{u}_{1}\right]_{\mathcal{B}}+c_{2}\left[\mathbf{u}_{2}\right]_{\mathcal{B}}+\ldots+c_{n}\left[\mathbf{u}_{n}\right]_{\mathcal{B}}
$$

Any one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism and the vector spaces are said to be isomorphic.
\rightarrow This means that they may look and feel completely different, but they act the same and are indistinguishable.
\rightarrow So \mathbb{P}_{2} is isomorphic to \mathbb{R}^{3}.
\rightarrow In general, any vector space whose basis has n elements is isomorphic to \mathbb{R}^{n}.

Ex. Show that $1+2 t^{2}, 4+t+5 t^{2}$, and $3+2 t$ are linearly dependent in \mathbb{P}_{2}.

Ex. Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \mathbf{x}=\left[\begin{array}{c}3 \\ 12 \\ 7\end{array}\right], \mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
Then \mathcal{B} is a basis for $H=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Determine if \mathbf{x} is in H and, if it is, find the \mathcal{B}-coordinate for \mathbf{x}.

In the previous example, H represented a plane in \mathbb{R}^{3}.
\rightarrow We've just shown that this subspace of \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}.

Dimensions of a Vector Space

If a basis for a vector space V contains n vectors, we say that V is finite-dimensional and the dimension of V, written $\operatorname{dim} V$, is n.

- The dimension of the zero subspace $\{\mathbf{0}\}$ is defined as 0 .
- If V is not spanned by a finite set, we say V is infinitedimensional.
- If $\operatorname{dim} V=n$, then V is isomorphic with \mathbb{R}^{n}.

Ex. The dimension of \mathbb{P}_{2} is 3 because its basis is $\left\{1, t, t^{2}\right\}$.

Ex. \mathbb{P} is infinite-dimensional.

Ex. Find the dimension for $H=\operatorname{span}\left\{\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.

Ex. Find the dimension for $H=\left\{\left[\begin{array}{c}a-3 b+6 c \\ 5 a+4 d \\ b-2 c-d \\ 5 d\end{array}\right]\right\}$.

Ex. Find the dimension for $K=\operatorname{span}\left\{2 t^{2}+2,(t+1)^{2}, t\right\}$.

Consider the subspaces of \mathbb{R}^{3}
0 -dimensional: Only the zero subspace
1-dimensional: Multiples of a single vector, so lines through the origin

2-dimensional: Linear combinations of two independent vectors, so planes through the origin
3-dimensional: All of \mathbb{R}^{3}

Going back to $\operatorname{Nul} A$ and $\operatorname{Col} A$

The dimension of $\operatorname{Nul} A$ is the number of free variables of the equation $A \mathbf{x}=\mathbf{0}$.
The dimension of $\operatorname{Col} A$ is the number of pivot columns of A.

Ex. Find the dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$.

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Before we can talk about rank, we need to define the row space of A, denoted Row A, and the subspace that is the span of the rows of A.
Ex. The row space of $A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right]$ is
a subspace of \mathbb{R}^{5}, and we can write the vectors horizontally if we wish.

Note: $\operatorname{Row} A=\operatorname{Col} A^{\mathrm{T}}$

Thm. If two matrices A and B are row equivalent, their row spaces are the same. In addition, if B is in echelon form, its nonzero rows form a basis for the row space of A as well as B.

- This works because row operations that would result in B are just linear combinations of the rows of A

Ex. Find the bases for Row $A, \operatorname{Col} A$, and $\operatorname{Nul} A$ for $A=$
$\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right]$.

Some observations:

- The basis for $\operatorname{Col} A$ used entries of A, but the bases for $\operatorname{Nul} A$ and Row A had no connection to the entries of A.
- Although the first 3 rows of the echelon form are independent, we can't assume the same is true of A.

Def. The rank of a matrix is the dimension of $\operatorname{Col} A$.
Thm. Rank Theorem

- $\operatorname{Col} A$ and Row A have the same dimensions
- If A is an $m \times n$ matrix, $\operatorname{Rank} A+\operatorname{dim}(\operatorname{Nul} A)=n$

Why are these true?

Ex. If A is 7×9 with a two-dimensional null space, what is the rank of A ?

Ex. Could a 6×9 matrix have a two-dimensional null space?

Ex. Suppose a homogeneous system of equations with 18 equations and 20 variables if found to have a twodimensional set of solutions. Does every associated nonhomogeneous system have a solution?

Thm. Invertible Matrix Theorem
Let A be $n \times n$. The following are equivalent:
i. $\quad A$ is invertible
ii. A is row equivalent to I.
iii. A has n pivot positions (one in each row and column).
iv. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
v. The columns of A are linearly independent.
vi. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
vii. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}.
viii. The columns of A span \mathbb{R}^{n}.
ix. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
x. The determinant of A is not zero
xi. $\operatorname{Col} A=\mathbb{R}^{n}$
xii. Row $A=\mathbb{R}^{n}$
xiii. $\operatorname{Nul} A$ is the zero subspace

