Change of Basis

Some problems are easier to work in a different basis.
\rightarrow We need to talk about how to change between bases.

Ex. Consider two bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ such that $\mathbf{b}_{1}=4 \mathbf{c}_{1}+\mathbf{c}_{2}$ and $\mathbf{b}_{2}=-6 \mathbf{c}_{1}+\mathbf{c}_{2}$. Suppose $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, find $[\mathbf{x}]_{c}$.

We can notice that $[\mathbf{x}]_{c}$ was equal to the product of a matrix and $[\mathbf{x}]_{\mathcal{B}}$.

Further, we notice that the columns of the matrix were the \mathcal{C} coordinates of the vectors in \mathcal{B}

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathrm{P}}=\left[\begin{array}{llll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & {\left[\mathbf{b}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}
\end{array}\right]
$$

This is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}
\rightarrow To change from \mathcal{C} to \mathcal{B}, we can use the inverse

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{\mathrm{P}}=(\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathrm{P}})^{-1}
$$

In general, we can find the change-of-coordinates matrix by using

$$
\left[\begin{array}{ll}
P_{\mathcal{B}} & P_{\mathcal{C}}
\end{array}\right] \sim\left[\begin{array}{ll}
I & \underset{\mathcal{B} \leftarrow \mathcal{C}}{\mathrm{P}}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Ex. Let } \mathbf{b}_{1}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}
-2 \\
4
\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{c}
-7 \\
9
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-5 \\
7
\end{array}\right] \\
& \text { be the vectors of bases } \mathcal{B} \text { and } \mathcal{C} \text {. Find } \underset{\mathcal{B} \leftarrow \mathcal{C}}{\mathrm{P}} \text { and } \underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathrm{P}}
\end{aligned}
$$

Eigenvalues and Eigenvectors

Def. Let A be a square matrix. A number λ is an eigenvalue of A if there is a nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

\mathbf{x} is called an eigenvector corresponding to λ.

Ex. Show that $\mathbf{x}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{ccc}0 & -1 & -3 \\ 2 & 3 & 3 \\ -2 & 1 & 1\end{array}\right]$

Ex. Show that $\lambda=7$ is an eigenvalue of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

In the last example, we solved the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$
\rightarrow This is the null space of the matrix $A-\lambda I$
\rightarrow This is a subspace which we call the eigenspace of A corresponding to λ.

Ex. An eigenvalue of $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ is $\lambda=2$. Find a basis
 for the corresponding eigenspace.

Thm. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.
\rightarrow This fact will be useful later.

Ex. Show that $\lambda=3$ is an eigenvalue of $A=\left[\begin{array}{ccc}3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2\end{array}\right]$

The eigenvalues of a triangular matrix are the entries on the main diagonal.
\rightarrow Note that $\lambda=0$ is also an eigenvalue in the previous example
\rightarrow When 0 is an eigenvalue, this means that $A \mathbf{x}=0 \mathbf{x}$, or $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution
\rightarrow This means that A is not invertible

Thm. Invertible Matrix Theorem
Let A be $n \times n$. The following are equivalent:
i. $\quad A$ is invertible
ii. A is row equivalent to I.
iii. A has n pivot positions (one in each row and column).
iv. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
v. The columns of A are linearly independent.
vi. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
vii. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}.
viii. The columns of A span \mathbb{R}^{n}.
ix. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
x . The determinant of A is not zero
xi. $\operatorname{Col} A=\mathbb{R}^{n}$
xii. Row $A=\mathbb{R}^{n}$
xiii. $\operatorname{Nul} A$ is the zero subspace
xiv. The number 0 is not an eigenvalue of A

For more complicated matrices A, we need a process to find eigenvalues and eigenvectors:
$\rightarrow(A-\lambda l) \mathbf{x}=0$
\rightarrow By the Invertible Matrix Theorem, this has a nontrivial solution only when $(A-\lambda I)$ is not invertible
\rightarrow This means that $\operatorname{det}(A-\lambda I)=0$
\rightarrow The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$

Ex. Find the eigenvalues and bases for the corresponding
eigenspaces of $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]$

When A is $n \times n$, the characteristic equation is degree n and is much harder to solve. To make life easier, let's review some properties of determinants:

- Let U be an echelon form of A obtained by replacements and interchanges (no scaling), and let r be the number of interchanges, then

$$
\operatorname{det} A=\left\{\begin{array}{cc}
(-1)^{r} \operatorname{det} U & \text { when } A \text { is invertible } \\
0 & \text { when } A \text { is not invertible }
\end{array}\right.
$$

When A is $n \times n$, the characteristic equation is degree n and is much harder to solve. To make life easier, let's review some properties of determinants:

- $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$
- $\operatorname{det}\left(A^{\mathrm{T}}\right)=\operatorname{det} A$
- If A is triangular, $\operatorname{det} A$ is the product of the entries on the main diagonal
- Row replacement doesn't change the determinant
- Row interchange changes the sign of the determinant
- Row scaling also scales the determinant by the same factor

Ex. Find the determinant of $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$

Ex. Find the characteristic equation of $A=\left[\begin{array}{cccc}3 & 6 & -8 & 4 \\ 0 & 1 & 6 & -6 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 3\end{array}\right]$

We say that $\lambda=3$ is an eigenvalue of multiplicity 2 .

For this class, we will only focus on real valued eigenvalues.

- It should be noted, though, that eigenvalues are solutions to $n^{\text {th }}$ degree polynomial equations, and so they can be complex

Also, in this class we will only be solving characteristic equations that are quadratic.

Def. Two matrices A and B are similar if there is some matrix P such that $A=P B P^{-1}$

We say that the transformation $A \mapsto P A P^{-1}$ is called a similarity transformation.

Thm. If two matrices are similar, then they have the same characteristic equation and, therefore, the same eigenvalues with the same multiplicities.
\rightarrow Let's prove it.

