Diagonalization

Ex. If $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$, find D^{3}.

If a matrix is diagonal, it's easy to find a power of the matrix

Ex. Consider the matrices $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right], P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$,
and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$. It can be shown that $A=P D P^{-1}$, find A^{3}.

Def. A matrix A is diagonalizable if it is similar to a diagonal matrix D.

$$
A=P D P^{-1}
$$

Thm. The Diagonalization Theorem
An $n \times n$ matrix A is diagonalizable if and only if its eigenvectors form a basis for \mathbb{R}^{n}.

- This is called an eigenvector basis of \mathbb{R}^{n}.
- The columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues (remember, similar matrices have the same eigenvalues).
To "diagonalize" a matrix, we need to find D and P.

Ex. Diagonalize, if possible, $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$

We could check by using $A=P D P^{-1} \rightarrow A P=P D$

Ex. Determine if $A=\left[\begin{array}{lll}9 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 5\end{array}\right]$ is diagonalizable.

If there are n distinct eigenvalues, then there are n independent eigenvectors \rightarrow diagonalizable.

Ex. Diagonalize, if possible, $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$

Ex. Diagonalize, if possible, $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$

