Orthogonal Projections

Last class, we projected a vector \mathbf{y} onto a line that was the span of a vector $\mathbf{u} \rightarrow$ a subspace with dimension 1
Today, we will discuss projecting a vector \mathbf{y} onto a subspace that has a dimension greater than 1

Consider $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$, an orthogonal basis of \mathbb{R}^{5} and the vector \mathbf{y} in \mathbb{R}^{5}.
Consider the subspace $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}+c_{4} \mathbf{u}_{4}+c_{5} \mathbf{u}_{5} \\
\mathbf{y}=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}\right)+\left(c_{3} \mathbf{u}_{3}+c_{4} \mathbf{u}_{4}+c_{5} \mathbf{u}_{5}\right) \\
\mathbf{y}=\mathbf{z}_{1}+\mathbf{z}_{2}
\end{gathered}
$$

$\rightarrow \mathbf{z}_{1}$ is in W, let's show \mathbf{z}_{2} is in W^{\perp}

This means that $W^{\perp}=\operatorname{span}\left\{\mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$

Thm. Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Every vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.
If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis of W, then

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}
$$

and $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$
$\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W and is sometimes written $\operatorname{proj}_{W} \mathbf{y}$.

Ex. Let $\left\{\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]\right\}$ be an orthogonal basis for W. Write
$\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ as the sum of a vector in W and a vector in W^{\perp}.

Thm. Best Approximation Theorem
$\hat{\mathbf{y}}$ is the vector in W that is closest to \mathbf{y}, in the sense that, for any vector \mathbf{v} in W,

$$
\|\mathbf{y}-\hat{\mathbf{y}}\| \leq\|\mathbf{y}-\mathbf{v}\|
$$

$\hat{\mathbf{y}}$ is called the best approximation of \mathbf{y} by elements of W.
Because we haven't discussed the basis of W, this means that $\hat{\mathbf{y}}$ is the same no matter what basis is used for W.

Ex. Find the distance from $\mathbf{y}=\left[\begin{array}{l}-1 \\ -5 \\ 10\end{array}\right]$ to $W=\operatorname{span}\left\{\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}$.

If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of W, then

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{H}_{\mathbf{t}} \cdot \mathbf{u}_{\mathbf{T}}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{H}_{z} \cdot \mathbf{u}_{\boldsymbol{z}}} \mathbf{u}_{2}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{\overline{\mathcal{P}}} \cdot \mathbf{u}_{\overline{\mathcal{P}}}} \mathbf{u}_{p}
$$

If we define $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then $\hat{\mathbf{y}}=U U^{T} \mathbf{y}$
\rightarrow Prove it

Ex. Let $W=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ (note its orthogonal).
Find a matrix A such that $\operatorname{proj}_{W} \mathbf{y}=A \mathbf{y}$ for any vector \mathbf{y}.

We've seen that it's useful to have an orthogonal basis \rightarrow If we are given some other basis, we can find an orthogonal basis using the Gram-Schmidt Process

Gram-Schmidt Process

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\text {span }\left\{\mathbf{v}_{1}\right\}} \mathbf{x}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}
\end{aligned}
$$

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\operatorname{proj}_{\text {span }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}} \mathbf{x}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}
$$

Ex. Let $W=\operatorname{span}\left\{\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\right\}$, find an orthogonal basis.

Ex. Let $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$, find an orthogonal basis.

Ex. Let $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$, find an orthonormal basis.

$$
\begin{aligned}
& \text { Ex. Let } W=\operatorname{Nul}\left[\begin{array}{lll}
1 & -1 & -2 \\
2 & -2 & -4 \\
4 & -4 & -8
\end{array}\right] \text {, find the point in } W \text { that is } \\
& \text { closest to } \mathbf{y}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { and find the distance from } \mathbf{y} \text { to } W \text {. }
\end{aligned}
$$

