Orthogonal Projections

Last class, we projected a vector **y** onto a line that was the span of a vector $\mathbf{u} \rightarrow$ a subspace with dimension 1

Today, we will discuss projecting a vector **y** onto a subspace that has a dimension greater than 1

Consider $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$, an orthogonal basis of \mathbb{R}^5 and the vector **y** in \mathbb{R}^5 .

Consider the subspace $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5$$
$$\mathbf{y} = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2) + (c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5)$$
$$\mathbf{y} = \mathbf{z}_1 + \mathbf{z}_2$$

 \rightarrow **z**₁ is in *W*, let's show **z**₂ is in *W*^{\perp}

This means that $W^{\perp} = \operatorname{span} \{ \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5 \}$

Thm. Orthogonal Decomposition Theorem

Let *W* be a subspace of \mathbb{R}^n . Every vector **y** in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

If $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

and $\mathbf{z} = \mathbf{y} - \widehat{\mathbf{y}}$

 $\hat{\mathbf{y}}$ is called the <u>orthogonal projection of \mathbf{y} onto W</u> and is sometimes written $\operatorname{proj}_W \mathbf{y}$.

 $\hat{\mathbf{y}} = \operatorname{proj}_{w} \mathbf{y}$

W

Ex. Let
$$\left\{ \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$$
 be an orthogonal basis for W . Write $\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ as the sum of a vector in W and a vector in W^{\perp} .

Thm. Best Approximation Theorem

 $\hat{\mathbf{y}}$ is the vector in *W* that is closest to \mathbf{y} , in the sense that, for any vector \mathbf{v} in *W*,

$$\|\mathbf{y} - \widehat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{v}\|$$

 $\hat{\mathbf{y}}$ is called the <u>best approximation of \mathbf{y} by elements of W.</u>

Because we haven't discussed the basis of W, this means that $\hat{\mathbf{y}}$ is the same no matter what basis is used for W.

Ex. Find the distance from
$$\mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}$$
 to $W = \operatorname{span} \left\{ \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \right\}.$

If $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis of W, then $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_{\pm} \cdot \mathbf{u}_{\pm}} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$ If we define $U = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_p]$, then $\hat{\mathbf{y}} = UU^T \mathbf{y}$ \rightarrow Prove it

Ex. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 (note its orthogonal).
Find a matrix A such that $\operatorname{proj}_W \mathbf{y} = A\mathbf{y}$ for any vector \mathbf{y} .

We've seen that it's useful to have an orthogonal basis

 \rightarrow If we are given some other basis, we can find an orthogonal basis using the Gram-Schmidt Process

Ex. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$$
, find an orthogonal basis.

Ex. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix} \right\}$$
, find an orthogonal basis.

Ex. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$
, find an orthonormal basis.

Ex. Let
$$W = \operatorname{Nul} \begin{bmatrix} 1 & -1 & -2 \\ 2 & -2 & -4 \\ 4 & -4 & -8 \end{bmatrix}$$
, find the point in W that is closest to $\mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and find the distance from \mathbf{y} to W .