Inner Product Spaces

All of the inner products that we've computed, and all of the results, have been in \mathbb{R}^{n}.
\rightarrow For other spaces, we will define the inner product to have the same properties as it has in \mathbb{R}^{n}.

Def. An inner product on a vector space V is a function that satisfies the following axioms for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} and for all scalars c.
i. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$
ii. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
iii. $\langle c \mathbf{u}, \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle$
iv. $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ and $\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$.

A vector space with an inner product is called an inner product space.
\rightarrow The dot product is considered the standard inner product
\rightarrow Nearly everything we've discussed for \mathbb{R}^{n} in this chapter carries over to other inner product spaces

Ex. Consider the vector space \mathbb{P}_{2} with inner product $\langle p, q\rangle=p(0) q(0)+p\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right)+p(1) q(1)$. If $p(t)=12 t^{2}$ and $q(t)=2 t-1$, compute $\langle p, q\rangle$ and $\langle q, q\rangle$.

Ex. For any two vectors $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, define $\langle\mathbf{u}, \mathbf{v}\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}$. Determine if this is an inner product.

This is sometimes called a weighted dot product.
 $\langle\mathbf{u}, \mathbf{v}\rangle=4 u_{1} v_{1}-5 u_{2} v_{2}$. Determine if this is an inner product.

Weighted dot products only work if the weights are positive.

Ex. Consider the vector space $\mathcal{C}[a, b]$ and define
$\langle f(t), g(t)\rangle=\int_{a}^{b} f(t) g(t) d t$. Determine if this is an inner product.

We can extend concepts we used with dot product to more general inner products:

- The lengths of a vector is $\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle$
- A unit vector is a vector with length 1
- The distance between \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$
- Two vectors are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$

Ex. Consider the vector space \mathbb{P}_{2} with inner product $\langle p, q\rangle=p(0) q(0)+p\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right)+p(1) q(1)$. If $p(t)=12 t^{2}$ and $q(t)=2 t-1$, find the length of p and q.

Ex. Consider the vector space $\mathcal{C}[a, b]$ and define $\langle f(t), g(t)\rangle=\int_{a}^{b} f(t) g(t) d t$. Find equations to find the length of f and the distance between f and g.

Ex. Consider the vector space $\mathcal{C}[-\pi, \pi]$ and define $\langle f(t), g(t)\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t$. Show that $f(x)=\sin x$ and $g(x)=\cos x$ are orthogonal.

In the next example, we'll extend what we've learned about dot product to our function inner product space. If f is in \mathcal{C} and W is a subspace with orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then

$$
\begin{gathered}
\operatorname{proj}_{W} f=\frac{\left\langle f, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}+\frac{\left\langle f, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2} \\
\operatorname{dist}(f, W)=\left\|f-\operatorname{proj}_{W} f\right\|
\end{gathered}
$$

To find the orthogonal basis, we'll use the Gram-Schmidt process.

Ex. Consider the vector space $\mathcal{C}[0,1]$ and functions $f_{1}(t)=$ $1, f_{2}(t)=t$, and $f_{3}(t)=t^{2}$, and define $\langle f(t), g(t)\rangle=$ $\int_{0}^{1} f(t) g(t) d t$. Find the distance from f_{3} to $\operatorname{span}\left\{f_{1}, f_{2}\right\}$.

Ex. Diagonalize $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.

Not all matrices can be diagonalized. This section finds criteria that identify matrices that can.

Certainly, if an $n \times n$ matrix has n distinct eigenvalues, then it can be diagonalized.

Def. A matrix is symmetric if $A^{\mathrm{T}}=A$, meaning $a_{i j}=a_{j i}$.
Symmetric:

$$
\left[\begin{array}{cc}
1 & -2 \\
-2 & 6
\end{array}\right]\left[\begin{array}{ccc}
0 & 3 & -8 \\
3 & 1 & 4 \\
-8 & 4 & 7
\end{array}\right]
$$

Not Symmetric:

$$
\left[\begin{array}{cc}
1 & 5 \\
-2 & 6
\end{array}\right]\left[\begin{array}{ccc}
0 & 7 & -8 \\
3 & 1 & 5 \\
-8 & 4 & 7
\end{array}\right]\left[\begin{array}{ccc}
1 & 5 & -9 \\
5 & 8 & 2
\end{array}\right]
$$

Remember: An orthogonal matrix P is a matrix in which the columns are orthonormal. Additionally, $P^{-1}=P^{T}$.

Def. A matrix is orthogonally diagonalizable if there is an orthogonal matrix P and diagonal matrix D such that $A=P D P^{-1}$

Thm. A matrix is orthogonally diagonalizable if and only if it is symmetric.
\rightarrow If a matrix is symmetric, it is automatically orthogonally diagonalizable.
\rightarrow Some non-symmetric matrices can still be diagonalized, but there's no quick way to check this.

Ex. Orthogonally diagonalize $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$. The characteristic equation is $0=-(\lambda+2)(\lambda-7)^{2}$.

