Vectors

A matrix with only one column is called a column vector, or simply a vector.

$$
\mathbf{u}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

The set of all vectors with 2 entries is \mathbb{R}^{2} (read R-two), since each of the two entries can be any real number.
Two vectors are equal if the corresponding entries are equal.

Ordered pairs in the $x y$-plane, like vectors in \mathbb{R}^{2}, are represented by two numbers.
We can identify the plotted point $(3,-1)$ with the
column vector $\left[\begin{array}{c}3 \\ -1\end{array}\right]$.
Sometimes, it is useful to include a directed line segment (arrow) from the origin to the point, though we are not interested in any of the points on the segment.

FIGURE 1 Vectors as points.

FIGURE 2 Vectors with arrows.

Adding and subtracting vectors means performing the operations on corresponding entries

Scalar multiplication means multiplying a vector by a constant (scalar)
\rightarrow We do this by multiplying each entry by the constant

Ex. Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
a. $3 \mathbf{u}$
b. $3 \mathbf{u}-\mathbf{v}$

If \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented as points in the $x y$-plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vertex of the parallelogram formed by \mathbf{u} and \mathbf{v}.

Def. If c is a scalar and \mathbf{v} is a vector, then $c \mathbf{v}$ is the vector with the same direction as \mathbf{v} that has length c times as long as \mathbf{v}. If $c<0$, then $c \mathbf{v}$ goes in the opposite direction as \mathbf{v}.

These ideas can be extended to n-dimensional space, \mathbb{R}^{n}.

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

The zero vector, $\mathbf{0}$, is the vector whose entries are all zero.

```
    Algebraic Properties of }\mp@subsup{\mathbb{R}}{}{n
    For all \mathbf{u},\mathbf{v},\mathbf{w}\mathrm{ in }\mp@subsup{\mathbb{R}}{}{n}\mathrm{ and all scalars }c\mathrm{ and }d\mathrm{ :}
    (i) }\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}<
    (ii) (\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) (vi) (c+d)\mathbf{u}=c\mathbf{u}+d\mathbf{u}
    (iii) }\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}\quad\mathrm{ (vii) }c(d\mathbf{u})=(cd)(\mathbf{u}
    (iv) }\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}\mathrm{ ,
        where -u denotes (-1)\mathbf{u}
```

A linear combination of vectors involves multiplying each vector by a constant coefficient and adding the results.

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}
$$

is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$
\rightarrow The vector $\mathbf{u}=\left[\begin{array}{c}14 \\ -7\end{array}\right]$ is a linear combination of $\mathbf{v}_{1}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ because $\mathbf{u}=3 \mathbf{v}_{1}+2 \mathbf{v}_{2}$.
The coefficients are called the weights of the combination

Ex. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

Notice that the columns of our augmented matrix were $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{b}.
\rightarrow We can abbreviate by writing $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}\end{array}\right]$
In general:
A vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n} & \mathbf{b}\end{array}\right]$

Ex. Convert $\left\{\begin{array}{c}3 x_{1}-2 x_{2}+x_{3}=4 \\ -x_{1}+5 x_{2}+2 x_{3}=6 \text { to a vector equation. } \\ 2 x_{1}-x_{2}-5 x_{3}=2\end{array}\right.$

Def. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned by $\mathbf{v}_{1} \ldots, \mathbf{v}_{p}$.
That is, $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the set of all vectors that can be written $c_{1} \mathbf{v}_{1}+\ldots+c_{p} \mathbf{v}_{p}$, where c_{1}, \ldots, c_{p} are scalars.

In \mathbb{R}^{3} :
$\operatorname{Span}\{\mathbf{v}\}$ is the line through the origin and \mathbf{v} :

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is the plane through the origin, \mathbf{u} and \mathbf{v} :

Ex. Determine if \mathbf{b} is in the plane generated by $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}
5 \\
-13 \\
-3
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-3 \\
8 \\
1
\end{array}\right]
$$

The Matrix Equation

Let A be the matrix $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{\mathrm{n}}\end{array}\right]$, where each of the a's is a vector in \mathbb{R}^{m}, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product $A \mathbf{x}$ is the linear combination of the columns of A using the entries of \mathbf{x} as weights:

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

Ex. $\left[\begin{array}{lll}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3 \\ 7\end{array}\right]$
Ex. $\left[\begin{array}{ll}2 & -3 \\ 8 & 0 \\ -5 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 7\end{array}\right]$
Ex. $\left[\begin{array}{ll}2 & -3 \\ 8 & 0 \\ -5 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 7 \\ 1\end{array}\right]$

Linear system:

$$
x_{1}+2 x_{2}-x_{3}=4
$$

$$
-5 x_{2}+3 x_{3}=1
$$

Vector equation: $x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}2 \\ -5\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
Matrix Equation: $\left[\begin{array}{lll}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
Linear systems can be expressed in 3 different ways, we can pick the one that's most convenient.

Ex. Is the equation $A \mathbf{x}=\mathbf{b}$ consistent for all possible b_{1}, b_{2}, and b_{3} ? $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7\end{array}\right], \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

Thm. Let A be an $m \times n$ matrix and \mathbf{b} be a vector in \mathbb{R}^{m}. The following are equivalent (all are true or none are true):
i. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for any \mathbf{b} in \mathbb{R}^{m}.
ii. Every \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A
iii. The columns of A span \mathbb{R}^{m} (every vector in \mathbb{R}^{m} is in the span of the columns of A)
iv. A has a pivot position in every row

Note: This is about the coefficient matrix, A, of a linear system, not the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$.

Ex. Can $A \mathbf{x}=\mathbf{b}$ be solved for any \mathbf{b} in \mathbb{R}^{3} ?

$$
A=\left[\begin{array}{llll}
1 & 0 & -1 & 6 \\
7 & 1 & -1 & 14 \\
5 & 1 & 1 & 2
\end{array}\right]
$$

Ex. Do the columns of A span \mathbb{R}^{3} ?

$$
A=\left[\begin{array}{ccc}
7 & 1 & 2 \\
5 & -1 & 6 \\
-2 & 0 & 4
\end{array}\right]
$$

Let's do these again using dot product:
Ex. $\left[\begin{array}{lll}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3 \\ 7\end{array}\right]$

Ex. $\left[\begin{array}{ll}2 & -3 \\ 8 & 0 \\ -5 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 7\end{array}\right]$

The identity matrix is a square matrix that has ones on its main diagonal and zeroes as every other entry

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Multiplying any vector by I results in the same vector

$$
I \mathbf{x}=\mathbf{x}
$$

Solution Sets of Linear Systems

The linear system $A \mathbf{x}=\mathbf{0}$ is called homogeneous.

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

This system always has at least 1 solution, where all the x 's are 0 . This is called the trivial solution.

Thm. The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.
\rightarrow So the homogeneous system has either one trivial solution or infinitely many solutions.

Ex. Describe the solution set of $3 x_{1}+5 x_{2}-4 x_{3}=0$

$$
\begin{array}{r}
-3 x_{1}-2 x_{2}+4 x_{3}=0 \\
6 x_{1}+x_{2}-8 x_{3}=0
\end{array}
$$

1 free variable resulted in a line in \mathbb{R}^{3}.

Ex. Describe the solution set of $10 x_{1}-3 x_{2}-2 x_{3}=0$

2 free variables resulted in a plane in \mathbb{R}^{3}.

If A has no free variables:

- Trivial solution
- The point $\mathbf{0}$ in \mathbb{R}^{3}

If A has 1 free variable:

- A line in \mathbb{R}^{3} that passes through the origin
- Can be described parametrically by $\mathbf{x}=t \mathbf{v}_{1}$.

If A has 2 free variables:

- A plane in \mathbb{R}^{3} that passes through the origin
- Can be described parametrically by $\mathbf{x}=s \mathbf{v}_{1}+t \mathbf{v}_{2}$.
\rightarrow Note this represents $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$
When we write our solution sets in this form, it is called the parametric vector form.

If $\mathbf{b} \neq \mathbf{0}$, the linear system $A \mathbf{x}=\mathbf{b}$ is called non-homogeneous.

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Ex. Describe the solution set of $3 x_{1}+5 x_{2}-4 x_{3}=7$

$$
\begin{aligned}
-3 x_{1}-2 x_{2}+4 x_{3} & =-1 \\
6 x_{1}+x_{2}-8 x_{3} & =-4
\end{aligned}
$$

$\underline{A x}=\mathbf{b}$ has no solutions if:

- $A \mathbf{x}=\mathbf{b}$ is inconsistent
$A \mathbf{x}=\mathbf{b}$ has 1 solution if:
- The corresponding homogeneous system had only the trivial solution
$A \mathbf{x}=\mathbf{b}$ has infinitely many solutions if:
- The corresponding homogeneous system had infinitely many solutions
- Solutions would be 1 vector plus a linear combination of vectors that satisfy the corresponding homogeneous system.
- $\mathbf{x}=\mathbf{p}+t \mathbf{v}_{1} \rightarrow$ a line not through the origin
- $\mathbf{x}=\mathbf{p}+s \mathbf{v}_{1}+t \mathbf{v}_{2} \rightarrow$ a plane not through the origin

Prove the previous result:

