Asymptotes and Continuity
Def. A horizontal asymptote of $f(x)$ occurs at $y=L$ if $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$

- A graph can cross a horizontal asymptote

Ex. Consider $f(x)=\sin \left(\frac{1}{x}\right)$.

$$
\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)=0 \Rightarrow y=0 \text { is horiz. }
$$

Def. (informal) A vertical asymptote of $f(x)$ occurs at values of x where $f(x)$ is undefined (sort of).

- This doesn't consider the pbssibility of a hole.

Def. (formal) Consider the point $x=a$, such that $f(a)$ is undefined.

- The graph has a vertical asymptote if

$$
\lim _{x \rightarrow a} f(x)=\infty \text { or }-\infty
$$

- The graph has a hole if $\lim _{x \rightarrow a} f(x)=$ a finite value.

Ex. Find all asymptotes of $f(x)=\frac{x^{2}-6 x+5}{x^{2}-7 x+10}$.
hariz.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-6 x+5}{x^{2}-7 x+10}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}}=1 \quad y=1 \quad \underset{x=2}{(x-2)(x-5)} \downarrow
$$

vert.

$$
\begin{aligned}
& \frac{\text { vert. }}{\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x^{2}-7 x+10}=\frac{6}{x} \lim _{x \rightarrow 5} \frac{(x-}{(x-}} \\
& \lim _{x \rightarrow 2} \frac{x^{2}-6 x+5}{x^{2}-7 x+10}=\frac{-3}{0}= \pm \infty
\end{aligned}
$$

$$
\frac{(x-1)(x-5)}{(x-2)(x-5)}=\lim _{x \rightarrow 5} \frac{x-1}{x-2}=\frac{4}{3}\left(\begin{array}{l}
\text { hole } \\
\left(5, \frac{4}{3}\right)
\end{array}\right.
$$

vert. a simp.

$$
x=2
$$

Ex. Find all asymptotes of $f(x)=\frac{1}{e^{x}+1} \neq 0$
horiz.

$$
\begin{aligned}
& \frac{\text { horiz. }}{\lim _{x \rightarrow \infty}} \frac{1}{e^{x}+1}=\frac{1}{\infty}=0 \\
& \lim _{x \rightarrow-\infty} \frac{1}{\substack{e^{x}+1}}=1
\end{aligned}
$$

no vert. asymp.

$$
e^{-\infty}=\frac{1}{e^{\infty}}: \frac{1}{\infty}=0
$$

Summary

For a horizontal asymptote,

$$
x \rightarrow \infty \text { and } f(x) \rightarrow \text { finite }
$$

For a vertical asymptote,
$x \rightarrow$ finite and $f(x) \rightarrow \infty$

Def. (informal) A function is continuous on an interval if the graph has no gaps, jumps, or breaks on the interval.

Ex. Is $f(x)=\frac{1}{x+2}$ continuous on $[0,5]$?
yes

Def. (formal) A function $f(x)$ is continuous on an interval if, for all points c on the interval:
i. $\lim _{x \rightarrow c} f(x)$ exists
ii. $f(c)$ exists
iii. $\lim _{x \rightarrow c} f(x)=f(c)$

Ex. Let $f(x)=\left\{\begin{array}{c}\frac{e^{x}-1}{2 x}, x \neq 0 \\ B, x=0\end{array}\right.$
Find a value of B so that $f(x)$ is continuous at $x=0$.
i) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\frac{b}{d}=\frac{1}{2}$
ii) $f(0)=B$
iii) $\lim _{x \rightarrow 0} f(x)=f(0)$

$$
\frac{1}{2}=B
$$

Unit 1 Progress Check: MCQ Part A

- Skip \#2-4, 16, 18

Unit 1 Progress Check: MCQ Part B

- Skip \#1, 3-6

Unit 1 Progress Check: MCQ Part C

- Skip \#3, 13-15

