Functions

Def. A function is a relationship where no two points have the same x-coordinate.

- Each x-coordinate is associated with at most one y-coordinate
- The graph passes the vertical line test

Domain \rightarrow all possible values of x where the function is defined.

Range \rightarrow all possible values that the function attains

Ex. Find the domain and range.
a) $y=\sqrt{x-4}+2$
b) $y=\ln (x-1)$

Domain: $x \geq 4$
Domain: $x>1$
$[4, \infty)$
Range $y \geq 2$

$$
[2, \infty)
$$

Range: all reals \mathbb{R}

Def. A piecewise function is a function whose equation depends of the value of x where it is being evaluated.
Ex. Graph $f(x)= \begin{cases}x+2 & x<0 \\ x-2 & x \geq 0\end{cases}$

The absolute value function is an example of a piecewise function:

$$
|x|=\left\{\begin{array}{lr}
x x & x \geq 00 \\
-x & x<0
\end{array}\right.
$$

Linear and Polynomial Functions

$$
y=m x+b \text { or } y-y_{1}=m\left(x-x_{1}\right)
$$

Either form is fine, you don't need to simplify your equation.

Ex. Find the equations of the lines parallel to and perpendicular to $y-5 x=3$ that contain the point $(2,1) . \quad y=5 x+3$

$$
\begin{aligned}
& \frac{\text { parallel }}{m=5} \quad y-y_{1}=m\left(x-x_{1}\right) \\
& (2,1), y-1=5(x-2)
\end{aligned}
$$

per.

$$
m=-\frac{1}{5}
$$

$$
(2,1)
$$

$$
y-1=-\frac{1}{5}(x-2)
$$

The standard form of a quadratic function is

$$
f(x)=a(x-h)^{2}+k
$$

The vertex of the parabola is the point (h, k).
If $a>0$, the parabola opens upward.
If $a<0$, the parabola opens downward.

Ex. Write the equation of the parabola whose vertex is $(1,2)$ and that contains the point $(3,5)$.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x-1)^{2}+2 \\
& 5=a(3-1)^{2}+2 \\
& 5=4 a+2 \quad y=\frac{3}{4}(x-1)^{2}+2 \\
& 3=4 a \\
& a=\frac{3}{4}
\end{aligned}
$$

Exponential Functions

$$
P=P_{0} a^{t} \quad \text { or } \quad P=P_{0} e^{k t} \quad \text { or } \quad P=P_{0}(1+r)^{t}
$$

$$
\begin{aligned}
& P_{0}=\text { initial value } \\
& a=\text { base } \\
& k=\text { continuous growth rate } \\
& r=\text { annual growth rate }
\end{aligned}
$$

Laws of Exponents can be found on p. 52

Ex. The population of Quahog is 10,000,000 and it has an annual growth rate of 2%. Find the doubling time.

$$
\begin{array}{rlrl}
P & =P_{0}(1+r)^{t} \\
20,000,000 & =10,000,000(1+.02)^{t} & t & =\frac{\ln 2}{\ln 1.02} \\
2 & =1.02^{t} & & =35.003 \times r 5 . \\
\frac{\ln 2}{} 2 & =\ln \left(1.02^{t}\right) & & t \frac{\ln 1.02}{\ln 1.02}
\end{array} \quad l
$$

Ex. Assume that housing prices grow exponentially and that Mr. Burns' mansion cost $\$ 50,000$ in 1970 and $t=0 \quad \rho=50,000$ $\$ 200,000$ in 1990. If t is years since 1970, write an $t=20 \quad \rho=200,000$ equation that represents the cost of the mansion as a function of t. How much would the house cost in 2012? $\rightarrow t=42$

$$
\begin{array}{rlrl}
p & =P_{0} e^{k t} k(20) & p & =50,000 e^{.069 t} \\
200,000 & =50,000 e^{20 k} \\
4 & =e^{20 k}\left(e^{20 k}\right) & p & =50,000 e^{.069(42)} \\
\ln 4 & =\ln 4=20 k & & =\$ 918,958.68 \\
& \ln 4=\frac{\ln 4}{20} &
\end{array}
$$

$$
k=.069
$$

- Exponential functions dominate power functions as $x \rightarrow \infty$.
Ex. (b)
As

$$
\begin{array}{r}
x \rightarrow \infty, \quad y=\frac{2^{x}}{x^{2}} \rightarrow \infty \\
\frac{B I G G E R}{B I G}
\end{array}
$$

Ex. Solve for x.
a) $9^{x}=3^{x+1}$

$$
\begin{aligned}
& \left(3^{2}\right)^{x}=3^{x+1} \\
& 3^{2 x}=3^{x+1}
\end{aligned}
$$

$$
2 x=x+1
$$

$$
x=1
$$

b)

$$
\begin{aligned}
(1 / 2)^{x} & =8 \\
\left(2^{-1}\right)^{x} & =2^{3} \\
2^{-x} & =2^{3}
\end{aligned}
$$

$$
-x=3
$$

