Inverse Functions

Def. A function is invertible if no two points have the same y-coordinate.

- The function is called one-to-one
- Each y corresponds to at most one x
- The graph passes the horizontal line test
- To find the inverse, switch x and y, and then solve for y.
\rightarrow You may not find the equation for the inverse, even if the function is invertible

Ex. Let $\underset{y}{f(x)}=\frac{1}{2 x-5}$, find $f^{-1}(x)$

$$
\begin{aligned}
& x=\frac{1}{2 y-5} \\
& \frac{1}{x}=2 y-5 \\
& \frac{1}{x}+5=2 y \\
& \frac{\frac{1}{x}+5}{2}=y
\end{aligned}
$$

Ex. Sketch $f^{-1}(x)$

Ex. Let $f(x)=x^{3}+x$, find $f^{-1}(10)$

$$
\begin{gathered}
\frac{0 n}{} f^{-1} \text { graph } \\
x=y^{3}+y \\
10=y^{3}+y \\
y=2
\end{gathered}
$$

Domain of $f \longleftrightarrow \rightarrow$ Range of f^{-1}
Range of $f \longleftrightarrow \rightarrow$ Domain of f^{-1}

Logarithms

$$
\begin{gathered}
\log @ x=y \Leftrightarrow a^{y}=x \\
\ln x=\log _{e} x
\end{gathered} \quad \ln (x+5)=? ?
$$

Laws of Logarithms

$$
\begin{array}{ll}
\ln (A B)=\ln A+\ln B & \log _{a} a^{x}=x \\
\ln \left(\frac{A}{B}\right)=\ln A-\ln B & a^{\log _{a} x}=x \\
\ln A^{n}=n \ln A & \ln 1=0
\end{array}
$$

Ex. Evaluate by hand.
a) 10 乘 $32=x \rightarrow 32=2^{x} \rightarrow x=5$
b) $\log _{3} 1=0$
c) $\log 3=x \rightarrow 3=9^{x} \rightarrow x=\frac{1}{2}$
d)

$$
\begin{aligned}
& \log _{10} \frac{1}{100}=x \rightarrow \frac{1}{100}=10^{x} \rightarrow 10^{-2}=10^{x} \\
& x=-2
\end{aligned}
$$

Ex. Express as a single logarithm

$$
\begin{gathered}
2 \log x-3 \log y-\log z \\
\log \left(x^{2}\right)-\log \left(y^{3}\right)-\log z \\
\log \left(\frac{x^{2}}{y^{3} z}\right)
\end{gathered}
$$

If we want to evaluate a logarithm on the calculator, we may need to change the base

$$
\log _{a} x=\frac{\log x}{\log a}=\frac{\ln x}{\ln a}
$$

Ex. Evaluate $f(x)=\log _{4} x$ at $x=25$.

$$
f(25)=\log _{4} 25=\frac{\ln 25}{\ln 4}=2.322
$$

Ex. Solve $10 e^{x}=7^{x}$

$$
\begin{gathered}
\ln \left(10 \cdot e^{x}\right)=\ln \left(7^{x}\right) \\
\ln 10+\ln \left(e^{x}\right)=x \ln 7 \\
\ln 10+x=x \ln 7 \\
\ln 10=x \ln 7-x \\
\ln 10=x(\ln 7-1) \\
x=\frac{\ln 10}{\ln 7-1}
\end{gathered}
$$

$$
12+x=5 x
$$

$$
12=4 x
$$

Ex. The half-life of a substance is 12 days. If there are 10.32 g initially, write an equation that represents the amount, A, of the substance after t days. When will there be 1 g left?

$$
\begin{array}{rlrl}
A & =A_{0} e^{k t} & A & =10.32 e^{-.058 t} \\
5.16 & =10.32 e^{k(12)} & 1 & =10.32 e^{-.058 t} \\
\ln .5 & =\operatorname{le} e^{12 k} & \ln \frac{1}{10.32} k e^{-.058 t} \\
\ln (.5) & =12 k & \ln \left(\frac{1}{10.32}\right)=-.058 t \\
k & =\frac{\ln (.5)}{12}=-.058 & t & =40.408
\end{array}
$$

$$
A=A_{0}\left(\frac{1}{2}\right)^{t / \lambda}
$$

Inverse Function	Domain	Range	Graph
$y=\sin ^{-1} x$	$[-1,1]$	$\begin{gathered} {\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} \\ \text { or } \\ {\left[-90^{\circ}, 90^{\circ}\right]} \end{gathered}$	
$y=\cos ^{-1} x$	$[-1,1]$	$\begin{gathered} {[0, \pi]} \\ \text { or } \\ {\left[0^{\circ}, 180^{\circ}\right]} \end{gathered}$	
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$\begin{gathered} \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \text { or } \\ \left(-90^{\circ}, 90^{\circ}\right) \end{gathered}$	
$y=\cot ^{-1} x$	$(-\infty, \infty)$	$\begin{gathered} (0, \pi) \\ \text { or } \\ \left(0^{\circ}, 180^{\circ}\right) \end{gathered}$	
$y=\sec ^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$\begin{gathered} {\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]} \\ \text { or } \\ {\left[0^{\circ}, 90^{\circ}\right) \cup\left(90^{\circ}, 180^{\circ}\right]} \end{gathered}$	
$y=\csc ^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$\begin{aligned} & {\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]} \\ & {\left[-90^{\circ}, 0^{\circ}\right) \cup\left(0^{\circ}, 90^{\circ}\right]} \end{aligned}$	

Ex. Evaluate by hand.
a) $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\frac{-\pi}{4}$

b) $\sin ^{-1}(\underbrace{\sin \frac{5 \pi}{4}}_{\frac{-\sqrt{2}}{2}})=\frac{-\pi}{4}$

Ex. Use a calculator to find the zeroes of

$$
\begin{aligned}
f(x)= & x^{3}-2 x^{2}-19 x+10 \\
& X=-3.760,506,5.254
\end{aligned}
$$

Ex. Use a calculator to find all solutions to $x^{3}-3 x-6=3 \cos x$ on the interval ($-3,3$).

$$
\begin{gathered}
x^{3}-3 x-6-3 \cos x=0 \\
x=2.213
\end{gathered}
$$

