Inverse Functions

<u>Def.</u> A function is <u>invertible</u> if no two points have the same *y*-coordinate.

- The function is called one-to-one
- Each *y* corresponds to at most one *x*
- The graph passes the horizontal line test
- To find the inverse, switch *x* and *y*, and then solve for *y*.
- →You may not find the equation for the inverse, even if the function is invertible

<u>Ex.</u> Let $f(x) = \frac{1}{2x-5}$, find $f^{-1}(x)$ $X = \frac{1}{2y - 5}$

 $f'(x) = \frac{\frac{1}{x} + 5}{7}$

 $\frac{1}{x} = 2y - 5$ $\frac{1}{x} + 5 = 2y$ $\frac{1}{x} + 5 = 2y$ $\frac{1}{x} + 5 = y$

Ex. Let $f(x) = x^3 + x$, find $f^{-1}(10)$

On f⁻¹ graph $\chi = \gamma^3 + \gamma$ $|0 = \gamma^{3} + \gamma$ $\gamma = 2$

 $f^{-1}(10) = Z$ $f^{-1}(10) = Z$ $f^{-1}(10) = Z$ $f^{-1}(10) = Z$ $f^{-1}(10) = Z$

Domain of $f \leftrightarrow \rightarrow$ Range of f^{-1} Range of $f \leftrightarrow \rightarrow$ Domain of f^{-1}

Logarithms

$$\log_{a} x = y \Leftrightarrow a^{y} = x$$

$$\ln x = \log_{e} x$$

$$\int_{a} (x + 5) = ??$$

<u>Laws of Logarithms</u> $\ln(AB) = \ln A + \ln B \qquad \log_a a^x = x$ $\ln\left(\frac{A}{B}\right) = \ln A - \ln B \qquad a^{\log_a x} = x$

 $\ln A^n = n \ln A$

 $\ln 1 = 0$

Ex. Evaluate by hand.
a)
$$\log_{2^{3}2} = \times \longrightarrow 32 = 2^{\times} \longrightarrow \times = 5$$

b) $\log_3 1 = \mathcal{O}$

d)
$$\log_{10} \frac{1}{100} : \chi \rightarrow \frac{1}{100} : 10^{\times} \rightarrow 10^{-2} : 10^{\times} \chi : -2$$

Ex. Express as a single logarithm $2\log x - 3\log y - \log z$ $log(x^2) - log(y^3) - log z$

 $lag\left(\frac{\chi^2}{\chi^3 \mathcal{E}}\right)$

If we want to evaluate a logarithm on the calculator, we may need to change the base

$$\log_a x = \frac{\log x}{\log a} = \frac{\ln x}{\ln a}$$

Ex. Evaluate
$$f(x) = \log_4 x$$
 at $x = 25$.
 $f(25) = \log_4 25 = \frac{25}{4} = 2.322$

<u>Ex.</u> Solve $10e^x = 7^x$ $L(10^{\circ}e^{\star}) = L(7^{\star})$ $\mu |0 + h(e^{x}) = x h^{7}$ $\int 10 + x = \chi \ln 7$ $L = Xh^{7} - X$ $h = X(h^{7} - 1)$ $\chi = \frac{l}{l} \frac{10}{27 - 1}$

12 + x = 5 x 12 = 4 x

Ex. The half-life of a substance is 12 days. If there are 10.32g initially, write an equation that represents the amount, A, of the substance - $A=A.\left(\frac{1}{2}\right)^{t/\lambda}$ after *t* days. When will there be 1g left? $A = A_0 e^{kt}$ $5.16 = 10.32 e^{k(12)}$ $L.5 = A e^{12k}$ A=10.32 e-.058t |=10.32 e $\begin{array}{cccc} \mathcal{L} & .5 = \mathcal{L} e^{12k} & & & & & & & & \\ \mathcal{L} & (.5) = 12k & & & & & & \\ k = \frac{\mathcal{L} (.5)}{12} = -.058 & & & & & \\ k = \frac{\mathcal{L} (.5)}{12} = -.058 & & & & & & \\ \end{array}$

INVERSE FUNCTION	Domain	RANGE	GRAPH
$y = \sin^{-1}x$	[-1,1]	$\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ or $[-90^{\circ}, 90^{\circ}]$	$\begin{array}{c} & x \\ \frac{\pi}{2} \\ -1 \\ -1 \\ \frac{\pi}{2} \end{array}$
$y = \cos^{-1}x$	[-1,1]	[0, π] or [0°, 180°]	π -1 -1 x
$y = \tan^{-1}x$	(−∞,∞)	$\begin{pmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \\ \text{or} \\ (-90^\circ, 90^\circ) \end{pmatrix}$	$\begin{array}{c} & & y \\ \hline & & \\ 2 \\ \hline & \\ 2 \\ \hline & \\ 2 \\ \hline & \\ 1 \\ \hline & \\ 1 \\ \hline & \\ 2 \\ \hline \end{array}$
$y = \cot^{-1}x$	(−∞,∞)	(0, π) or (0°, 180°)	
$y = \sec^{-1}x$	(−∞, −1]∪[1, ∞)	$\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix} \cup \begin{pmatrix} \frac{\pi}{2}, \pi \end{bmatrix}$ or $[0^{\circ}, 90^{\circ}) \cup (90^{\circ}, 180^{\circ}]$	$\begin{array}{c} & y \\ & \pi \\ & \pi \\ \hline & \pi \\ \hline & 2 \\ \hline & & \pi \\ \hline & \pi \\ \hline & & \pi \\ \hline \hline & \pi \\ \hline \hline & \pi \\ \hline \hline \\ \hline & \pi \\ \hline \hline & \pi \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$
$y = \csc^{-1}x$	(−∞, −1]∪[1, ∞)	$\begin{bmatrix} -\frac{\pi}{2}, 0 \\ \text{or} \end{bmatrix} \cup \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ or $\begin{bmatrix} -90^\circ, 0^\circ \end{bmatrix} \cup \begin{bmatrix} 0^\circ, 90^\circ \end{bmatrix}$	$\begin{array}{c} \frac{\pi}{2} \\ \hline \\ $

Ex. Evaluate by hand.
a)
$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$

b)
$$\sin^{-1}\left(\frac{\sin\frac{5\pi}{4}}{\frac{\sqrt{2}}{2}}\right) = \frac{-\pi}{4}$$

Ex. Use a calculator to find the zeroes of $f(x) = x^3 - 2x^2 - 19x + 10$ $\chi = -3,760,.506,5.254$ <u>Ex.</u> Use a calculator to find all solutions to $x^3 - 3x - 6 = 3\cos x$ on the interval (-3,3).

$$\chi^{3}-3\chi-6-3\cos\chi=0$$

 $\chi=2.2|3$