Warm up Problem

Wile E. Coyote's rocket has a position given by $s(t)=3 t^{2}-2$. Find the average velocity of the rocket on the interval [2,5]. What is the rocket's instantaneous velocity at $t=4$?

The Derivative

- Remember, velocity is the rate of change when dealing with the position function.
- When we generalize, the rate of change of a function is called the derivative.

Def. The derivative of a function $f(x)$ at $x=a$, denoted $f^{\prime}(a)$, is the rate of change of the function at the point. It is defined as:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If the limit exists, we say that $f(x)$ is differentiable at $x=a$. The graph will be "smooth" at this point.

Ex. If $f(x)=x^{2}$, find $f^{\prime}(3)$.

$$
\begin{gathered}
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \lim _{h \rightarrow 0} \frac{(3+h)^{2}-3^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0}(6+h)=6 \\
f^{\prime}(3)=6
\end{gathered}
$$

Thm. $f^{\prime}(a)$ is the slope of the tangent line of $f(x)$ at $x=a$.

Ex. Approximate the slope of the tangent line to $f(x)=2^{x}$ at $x=1$, then find the equation of the line.

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2^{1+h}-2^{\prime}}{h} \\
& =1.386 \\
f(1) & =2^{\prime}=2
\end{aligned}
$$

Pract. Find the slope of the tangent line to $f(x)=x^{2}+x$ at $x=3$, then find the

$$
\begin{aligned}
& f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\left[(3+h)^{2}+(3+h)\right]-12}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}+3+h-12}{h} \\
&=\lim _{h \rightarrow 0} \frac{7 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(7+h)}{h}=\lim _{h \rightarrow 0}(7+h)=7=m \\
& f(3)=3^{2}+3=12 \quad(3,12) \\
& y-12=7(x-3) \quad
\end{aligned}
$$

Ex. The table below gives selected values of $f(x)$. Use these values to approximate $f^{\prime}(7)$.

x	0	2	4	6	8	10	12								
$f(x)$	0	.25	.48	.68	.84	.95	1								
\uparrow															

$$
\frac{f(8)-f(6)}{8-6}=\frac{.84-.68}{2}=.08
$$

Ex. The equation of the line tangent to $f(x)$ at $x=5$ is $y=6 x-3$. Find $f(5)$ and $f^{\prime}(5)$.

$$
\begin{aligned}
& f(s)=6(s)-3=27 \\
& f^{\prime}(s)=6
\end{aligned}
$$

Alternate Form

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

