Derivatives of Polynomials and Exponents

Today (and all of next chapter), we will be creating a list of derivative formulas. \rightarrow Keep a running list in the front of your notebook so that you have easy access to it.
i. $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$ Power Rule vi. $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a$
ii. $\quad \frac{d}{d x}[x]=1$
vii. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
iii. $\frac{d}{d x}[c]=0$
iv. $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$
v. $\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$

Ex. $y=\sqrt{3} x^{7}-\frac{x^{5}}{5}+\pi$

$$
\begin{aligned}
& y^{\prime}=\sqrt{3}\left(7 x^{6}\right)-\frac{1}{5}\left(5 x^{4}\right)+0 \\
& y^{\prime}=7 \sqrt{3} x^{6}-x^{4}
\end{aligned}
$$

Ex. $f(x)=5 \sqrt{x}-\frac{10}{x^{2}}+\frac{1}{2 \sqrt{x}}$

$$
\begin{aligned}
& =5 x^{1 / 2}-10 x^{-2}+\frac{1}{2} x^{-1 / 2} \\
f^{\prime}(x) & =\frac{5}{2} x^{-1 / 2}+20 x^{-3}-\frac{1}{4} x^{-3 / 2}
\end{aligned}
$$

Ex. $y=2 x^{\sqrt{2}}+x+5^{3 / 2}$

$$
y^{\prime}=2 \sqrt{2} x^{\sqrt{2}-1}+1+0
$$

Ex. f

$$
\text { x. } \begin{aligned}
f(x) & =\frac{x^{5}-3 x^{2}+2 x-1}{x^{2}}=\frac{x^{5}}{x^{2}}-\frac{3 x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{1}{x^{2}} \\
& =x^{3}-3+2 x^{-1}-x^{-2} \\
f^{\prime}(x) & =3 x^{2}-2 x^{-2}+2 x^{-3}
\end{aligned}
$$

Power Rule

Fo Polynomials, Foo!
Look $A B X$ to the B minus one,
is the derivative.
Wake up you're naked at School.
La la la, la la. Power Rule!
Power Rula la la. Power Rule!
Derivatives of constants are always a slope of zero. Qerivatives of constants are always a slope of zero. Square root is the one halt power,
Square Root tis the one hald hower
Fou have nothing to fear, Oh? hov can you lose?
For all polyomials you can forget an your troubles,
For all polynomials you can forget all your troubles,
cause everyone knows you use:

Ex. $y=7^{x}$

$$
y^{\prime}=7^{x} \ln 7
$$

Ex. Find the instantaneous velocity of

$$
s(t)=4^{t}+t^{4} \text { at the point } t=2
$$

$$
\begin{aligned}
v(t) & =4^{t} \ln 4+4 t^{3} \\
v(2) & =4^{2} \ln 4+4(2)^{3} \\
& =16 \ln 4+32
\end{aligned}
$$

Ex. $y=e^{x}$

$$
y^{\prime}=e^{x}
$$

Ex. $f(x)=e^{10 x}=\left(e^{10}\right)^{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{10}\right)^{x} \cdot \ln \left(e^{10}\right) \\
& =10 e^{10 x}
\end{aligned}
$$

Ex. For what values of x is the graph of $y=x^{5}-5 x$ both increasing and concave up.

$$
f^{\prime}>0 \quad f^{\prime \prime}>0
$$

$$
\begin{aligned}
& y^{\prime}=5 x^{4}-5=0 \\
& 5 x^{4}=5 \\
& x^{4}=1 \\
& y^{\prime \prime}=20 x^{3}=0 \\
& x^{3}=0
\end{aligned} \quad \longrightarrow x= \pm 1
$$

Ex. Consider $f(x)=\left\{\begin{array}{c}|x-1|+2, x<1 \\ a x^{2}+b x, x \geq 1\end{array}\right.$
a) If $a=2$ and $b=3$, is f continuous at $x=1$?

$$
\begin{aligned}
& f(x)= \begin{cases}|x-1|+2 & x<1 \\
2 x^{2}+3 x & x \geq 1\end{cases} \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(2 x^{2}+3 x\right)=5 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(|x-1|+2)=2
\end{aligned}
$$

no

$$
f(x)=\left\{\begin{array}{ccc}
|x-1|+2, & x<1 & -(x-1)+2 \\
a x^{2}+b x, & x \geq 1 & -x+3
\end{array}\right.
$$

b) Find values for a and b so that f is differentiable at $x=1$. f and f^{\prime} are cont.

$$
\begin{aligned}
& f \text { and } f^{\prime} \text { are cont. } \\
& \begin{array}{l}
f \text { cont.? } \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(a x^{2}+b x\right)=a+b \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(|x-1|+2)=2 \\
\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}}(2 a x+b)=2 a+b \\
\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}}(-1)=-1 \\
2 a+b=-1 \\
2 a+b=-1
\end{array} \quad \begin{array}{l}
-3+b=2 \\
a=-2=-3 \\
b=5
\end{array}
\end{aligned}
$$

Unit 2 Progress Check: MCQ Part A

- Do them all

Unit 2 Progress Check: MCQ Part B

- Do \#1-3

