Warm up Problems

1. If $f(x)=\frac{1}{2} x-3$, find $f^{\prime}(x)$. $=\frac{1}{2}$
2. If $f(x)=3 x^{2}-2$, find $f^{\prime}(x)=6 x$
3. Given the graph of $f^{\prime}(x)$, find all $\rightarrow f$ pos. slope intervals where $f(x)$ is increasing. \downarrow

Interpreting the Derivative

New Notation: If $y=f(x)$, then
$f^{\prime}(x)=\frac{d y}{d x}=($ derivative of y with respect to $x)$

$$
\begin{gathered}
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a} \quad \frac{d}{d x}\left(x^{3}\right)=3 x^{2} \\
\frac{d y}{d x} \text { is a noun, } \frac{d}{d x} \text { is a verb }
\end{gathered}
$$

Ex. The cost C, in dollars, of building a new
Avengers facility that has area A square feet is given by $C=f(A)$. What are the units of $f^{\prime}(A) ?=\$ /$ sq. f t.
$f^{\prime}(A)=\frac{d C}{d A}=\frac{\$}{s q \cdot f t}$
sp. ft

Ex. The cost, in dollars, for the seven dwarves to extract T tons of ore from their mine is given by $M=f(T)$. What does $f^{\prime}(2000)=100$ mean?

$$
f^{\prime}(T)=\frac{d M}{d T}=\frac{\$}{\text { tans }}
$$

$\tau_{\text {tons }} \approx \$ /$ ton

After 2000 tons have been removed cast is changing at a rate of $\$ 100 /$ tor.

Ex. Suppose $P=f(t)$ is the population of Springfield, in millions, t years since 1990.
Explain $f^{\prime}(15)=-2$.

$$
f^{\prime}(t)=\frac{d P}{d t}=\frac{\text { mill pop. }}{y r s}
$$

In 2005, pop. changing at rate of -2 mill. people/year.
In 2005 pop. decreasing at a rate of 2 mill. people. lear.

t (years)	2	3	5	7	10
$H(t)$ (meters)	1.5	2	6	11	15

Ex. The table gives selected values of the height, H, of a tree at time t, where H is a differentiable function.
a) Use the data to estimate $H^{\prime}(6)$.

$$
H^{\prime}(6) \approx \frac{H(7)-H(5)}{7-5}=\frac{11-6}{2}=\frac{5}{2}
$$

b) Using correct units, interpret the meaning of $\mathrm{H}^{\prime}(6)$ in the context of the problem.

At 6 yrs., tree grows at a rate

$$
H^{\prime}(t)=\frac{d H}{d t}=\frac{m}{y r s}
$$

$$
\text { approx. } \frac{s}{2} \mathrm{~m} \text { lyrs. }
$$

Ex. Researchers are investigating plankton cells in a sea. At a depth of h meters, the density of plankton cells, in millions of cells per cubic meter, is modeled by $p(h)=h^{3}$.
a) Find $p^{\prime}(5)=3(s)^{2}$

$$
p^{\prime}(h)=3 h^{2}
$$

b) Using correct units, interpret the meaning of $p^{\prime}(5)$ in the context of the problem.

$$
\rho^{\prime}(h)=\frac{d \rho}{d h}=\frac{m_{i l l} \text { cells } / m^{3}}{m}
$$

At a depth of 5 m , density changes at a rate of 75 mill cells $/ \mathrm{m}^{3}$ per m .

Differentiabul

f of x plus h minus f of x all over h as h drops to zero is the formula to find the derivative in other words state the instantaneous rate.
f of x plus h minus f of x all over h as h drops to zero is the formula to find the derivative to find the slope at one point.

Infinitesimals $d y$ over $d x$, why he wrote it I can't say, Leibniz just liked it better that way.

So, f of x plus h minus f of x all over h as h drops to zero is the formula to find the derivative, with this I will have to learn to cope! Leibniz found the limit of the slope.

Infinitesimals $d y$ over $d x$.
Why he wrote it I can't say...Leibniz just liked it better that way!
f of x plus h minus f of x all over h as h drops to zero is the formula to find the derivative, with this I will have to learn to cope! Leibniz found the limit of the slope.

