New seats today, you may sit where you wish.
Not the back of any column!

- Blue part is out of 42
- Green part is out of 58
\rightarrow Total of 100 points possible

Velocity

General Concepts

- Slope is the steepness of a line
- Bigger slope $=$ steeper line
- Velocity has direction (pos./neg.) and magnitude
- Speed has only magnitude
- Speed $=\mid$ velocity \mid
- The tangent line of a curve passes through the graph at exactly one point.
- The secant line of a curve passes through the graph at two points.
- Evaluating $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}=\frac{a}{a}$
- Numerically (table of values)
- Algebraically (simplify and reduce)

Goal: Given the position of an object, find its velocity at a specific instant.
\rightarrow Consider tossing a ball into the air. If we were given an equation for the height of the ball, we want to find the velocity at one moment.

Since velocity is the change of distance over time, we can approximate it by the change of height (s) divided by the change of time (t). This is called the average velocity:

$$
v \approx \frac{\Delta s}{\Delta t}
$$

(ave. veloc. from $t=a$ to $t=b)=\frac{s(b)-s(a)}{b-a}$
This is the slope of the secant line.

This will give us an approximation of the velocity (over an interval), but we want the velocity at one instant.
\rightarrow Instead of the slope between two points, we want the slope of the graph at one point.
\rightarrow We can get a more precise answer if we let b get closer to a.
\rightarrow Here's what it looks like.

Consider the interval from a to $a+h$, let's find the slope of the secant line:

$$
\text { ave. veloc. }=\frac{s(a+h)-s(a)}{h}
$$

If we let $h \rightarrow 0$, we will get the instantaneous velocity at $t=a$:

$$
\text { (inst. veloc. at } t=a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

This is the "slope" at $t=a$.

Ex. Find the average velocity of $s(t)=t^{3}$ on the interval $[0,2]$, then find the instantaneous velocity at $t=1$.

$$
\begin{aligned}
\text { ave. veloc } & =\frac{\Delta(2)-a(0)}{2-0}=\frac{2^{3}-0^{3}}{2-0}=\frac{8}{2}=4 \\
\text { inst. veloce } & =\lim _{h \rightarrow 0} \frac{a(1+h)-s(1)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+3 h+3 h^{2}+h^{3}-1}{h}=\lim _{h \rightarrow 0} \frac{3 h+3 h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3+3 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(3+3 h+h^{2}\right)=3
\end{aligned}
$$

Pract. Find the average velocity of $s(t)$ on the interval [0,2], then find the instantaneous velocity at $t=1$.
a) $s(t)=t^{2}-1$
b) $s(t)=e^{t}$
ave. veloce. $=\frac{-(2)-0-(0)}{2-0}=\frac{3-(-1)}{2}=2$
inst. veloce. $=\lim _{h \rightarrow 0} \frac{a(1+h)-a(1)}{h}=\lim _{h \rightarrow 0} \frac{\left[(1+h)^{2}-1\right]-0}{h}$
$=\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}-1}{h}=\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2+h)}{h}$
$=\lim _{h \rightarrow c}(2+h)=2$

$$
\begin{aligned}
& \text { b) } s(t)=e^{t} \\
& \text { ave. veloc. }=\frac{\beta(2)-o(0)}{2-0}=\frac{e^{2}-e^{0}}{2}=3.195 \\
& \text { inst. valoc. }=\lim _{h \rightarrow 0} \frac{2(1+h)-\infty(1)}{h}=\lim _{h \rightarrow 0} \frac{e^{1+h}-e^{1}}{h}=2.718
\end{aligned}
$$

